scholarly journals Redeposition-Free Deep Etching in Small KY(WO4)2 Samples

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1033
Author(s):  
Simen Mikalsen Martinussen ◽  
Raimond N. Frentrop ◽  
Meindert Dijkstra ◽  
Sonia Maria Garcia-Blanco

KY(WO4)2 is a promising material for on-chip laser sources. Deep etching of small KY(WO4)2 samples in combination with various thin film deposition techniques is desirable for the manufacturing of such devices. There are, however, several difficulties that need to be overcome before deep etching of KY(WO4)2 can be realized in small samples in a reproducible manner. In this paper, we address the problems of (i) edge bead formation when using thick resist on small samples, (ii) sample damage during lithography mask touchdown, (iii) resist reticulation during prolonged argon-based inductively coupled plasma reactive ion etching (ICP-RIE), and (iv) redeposited material on the feature sidewalls. We demonstrate the etching of 6.5 µm deep features and the removal of redeposited material using a wet etch procedure. This process will enable the realization of waveguides both in ion-irradiated KY(WO4)2 as well as thin KY(WO4)2 membranes transferred onto glass substrate by bonding and subsequent polishing.

1999 ◽  
Vol 573 ◽  
Author(s):  
J. Etrillard ◽  
H. Maher ◽  
M. Medjdoub ◽  
J. L. Courant ◽  
Y. I. Nissim

ABSTRACTThe use of a low ion energy of an extremely dense plasma has been studied as a dry etching as well as a thin film deposition tool (same source, two different reactors) for InP and GaAs device processing. Under these working conditions it is expected to control well the etch depth or in the case of deposition to obtain high deposition rates. In all cases minimun ion damages are induced on the processed substrate. Both technologies are presented here from the point of view of material analysis as well as device processing demonstration. For etching, the gate recess of an InP-based HEMT has been addressed as one of the key technological step that requires such properties for good device performances. InGaAs/InAlAs HEMT like structures have been grown and the recess of the InGaAs layer has been conducted with a 13eV SiCl4 inductively coupled plasma (ICP). DLTS and AFM measurements made on the exposed AlinAs surface after InGaAs removal indicate that device quality on its electrical and structural properties are achieved. Passivation of fully processed HEMT devices with a ICP enhanced chemical vapor deposition (ICPECVD) silicon nitride film is being studied.


2002 ◽  
Vol 16 (01n02) ◽  
pp. 254-260 ◽  
Author(s):  
MARVIN CHAN ◽  
S. XU ◽  
N. JIANG ◽  
J. LONG ◽  
C. H. DIONG

Non-linear effects on Ti emission during TiN synthesis in an inductively coupled plasma assisted DC magnetron sputtering system have been investigated. TiN films are deposited on stainless steel 304 substrates, using N 2 + Ar mixture in the absence and presence of RF current variation. In-situ measurements of the optical emission collected during the deposition processes indicate differences in the intensities of the Ti species involved. Film characterizations indicate that such plasma non-linearity plays a pivotal role in the eventual film properties. Highly orientated (111) TiN films deposited under the same RF power were found to correspond to two different hardness values, one being 2240Hv and is 40% harder than the other.


2014 ◽  
Vol 609-610 ◽  
pp. 789-795 ◽  
Author(s):  
Zhen Wang ◽  
Yang Yang Qi ◽  
Ming Liang Zhang ◽  
An Ji ◽  
Fu Hua Yang ◽  
...  

A fabricating process of prototype thermoelectric device based on vertical silicon nanowires (SiNWs) for on-chip integration was presented. The SiNWs with diameter of 200 nm and height of 1 μm were fabricated by electron beam lithography and inductively coupled plasma etching. The gaps between the NWs were filled by the spin-on glass, which isolated the top and bottom electrodes. A serpentine platinum resistance thermometer coil was formed on the NWs to create temperature gradient across the NWs and measure the temperature of the top of NWs. I-V characteristics of the vertical device before and after annealing were measured. The nonlinear I-V curves were obtained, but the annealed one demonstrated 1000-fold reduction in resistance than the unannealed one.


2011 ◽  
Vol 257 (7) ◽  
pp. 2700-2706 ◽  
Author(s):  
Rongfu Qiu ◽  
Hai Lu ◽  
Dunjun Chen ◽  
Rong Zhang ◽  
Youdou Zheng

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 454 ◽  
Author(s):  
Medina ◽  
Rüter ◽  
Pujol ◽  
Kip ◽  
Masons ◽  
...  

This paper provides a generic way to fabricate a high-index contrast tapered waveguide platform based on dielectric crystal bonded on glass for sensing applications. As a specific example, KLu(WO4)2 crystal on a glass platform is made by means of a three-technique combination. The methodology used is on-chip bonding, taper cutting with an ultra-precise dicing saw machine and inductively coupled plasma-reactive ion etching (ICP-RIE) as a post-processing step. The high quality tapered waveguides obtained show low surface roughness (25 nm at the top of the taper region), exhibiting propagation losses estimated to be about 3 dB/cm at 3.5 m wavelength. A proof-of-concept with crystal-on-glass tapered waveguides was realized and used for chemical sensing.


Author(s):  
Karen M. Dowling ◽  
Ateeq J. Suria ◽  
Yoonjin Won ◽  
Ashwin Shankar ◽  
Hyoungsoon Lee ◽  
...  

High aspect ratio microchannels using high thermal conductivity materials such as silicon carbide (SiC) have recently been explored to locally cool micro-scale power electronics that are prone to on-chip hot spot generation. Analytical and finite element modeling shows that SiC-based microchannels used for localized cooling should have high aspect ratio features (above 8:1) to obtain heat transfer coefficients (300 to 600 kW/m2·K) required to obtain gallium nitride (GaN) device channel temperatures below 100°C. This work presents experimental results of microfabricating high aspect ratio microchannels in a 4H-SiC substrate using inductively coupled plasma (ICP) etching. Depths of 90 μm and 80 μm were achieved with a 5:1 and 12:1 aspect ratio, respectively. This microfabrication process will enable the integration of microchannels (backside features) with high-power density devices such as GaN-on-SiC based electronics, as well as other SiC-based microfluidic applications.


Sign in / Sign up

Export Citation Format

Share Document