scholarly journals A New Approach for the Control and Reduction of Warpage and Residual Stresses in Bonded Wafer

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 361
Author(s):  
Seyed Amir Fouad Farshchi Yazdi ◽  
Matteo Garavaglia ◽  
Aldo Ghisi ◽  
and Alberto Corigliano

A geometrical modification on silicon wafers before the bonding process, aimed to decrease (1) the residual stress caused by glass frit bonding, is proposed. Finite element modeling showed that (2) by introducing this modification, the wafer out-of-plane deflection was decreased by 34%. Moreover, (3) fabricated wafers with the proposed geometrical feature demonstrated an improvement for the (4) warpage with respect to the plain wafers. A benefit for curvature variation and overall shape of the (5) bonded wafers was also observed.

2013 ◽  
Vol 577-578 ◽  
pp. 253-256 ◽  
Author(s):  
Igor Tsukrov ◽  
Borys Drach ◽  
Harun Bayraktar ◽  
Jon Goering

This paper presents finite element modeling effort to predict possible microcracking of the matrix in 3D woven composites during curing. Three different reinforcement architectures are considered: a ply-to-ply weave, a one-by-one and a two-by-two orthogonal through-thickness reinforcement. To realistically reproduce the as-woven geometry of the fabric, the data from the Digital Fabric Mechanics Analyzer software is used as input for finite element modeling. The curing processed is modeled in a simplified way as a uniform drop in temperature from the resin curing to room temperature. The simulations show that the amount of residual stress is strongly influenced by the presence of through-thickness reinforcement.


Author(s):  
S. C. Ammula ◽  
Y. B. Guo ◽  
M. E. Barkey

High speed milling (HSM) is widely used in automotive and aerospace industries in fabricating mechanical components from high strength aluminum and other alloys due to high productivity and good surface finish. HSM induced residual stresses may significantly impact the fatigue life and corrosion resistance of the machined components. Traditional methods of residual stress (RS) measurement, such as hole drilling, X-ray diffraction, and neutron diffraction, are very time consuming and expensive, especially for the shallow subsurface (usually <100 μm) of a machined component. The compliance method provides a convenient alternative to these approaches to determine the residual stress distributions in the subsurface. However, the compliance method using wire EDM is prone to experimental errors. In addition, the traditional approach to calculate compliance function is very complex. This paper presents a new wet etching approach to obtain strains as a function of slot depth introduced in the subsurface. The strain readings were collected from a strain gauge mounted on the specimen surface near the slot edge. The compliance function can be conveniently calculated by simulating slot cutting using the finite element method via a Legendre polynomial subroutine as the applied load. These calculated compliance functions and measured strain values at different depths were used as inputs into a program to calculate residual stress. This leads to much a faster and less expensive method of determining residual stresses when compared with the traditional methods of residual stress determination. The capability of this new approach was demonstrated by high speed milling 6061-T651 and 7050-T7451 aluminum alloys. A design of experiment (DOE) method was adopted to conduct fifty-four cutting conditions with three levels of cutting speed, feed rate, and depth of cut. Residual stress profiles with twelve data points with spatial resolution as small as 1 μm in the subsurface were then obtained using this new approach. Residual stress sensitivity to cutting conditions was investigated. In addition, subsurface microstructure and microhardness were characterized.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 629
Author(s):  
Nana Kwabena Adomako ◽  
Sung Hoon Kim ◽  
Ji Hong Yoon ◽  
Se-Hwan Lee ◽  
Jeoung Han Kim

Residual stress is a crucial element in determining the integrity of parts and lifetime of additively manufactured structures. In stainless steel and Ti-6Al-4V fabricated joints, residual stress causes cracking and delamination of the brittle intermetallic joint interface. Knowledge of the degree of residual stress at the joint interface is, therefore, important; however, the available information is limited owing to the joint’s brittle nature and its high failure susceptibility. In this study, the residual stress distribution during the deposition of 17-4PH stainless steel on Ti-6Al-4V alloy was predicted using Simufact additive software based on the finite element modeling technique. A sharp stress gradient was revealed at the joint interface, with compressive stress on the Ti-6Al-4V side and tensile stress on the 17-4PH side. This distribution is attributed to the large difference in the coefficients of thermal expansion of the two metals. The 17-4PH side exhibited maximum equivalent stress of 500 MPa, which was twice that of the Ti-6Al-4V side (240 MPa). This showed good correlation with the thermal residual stress calculations of the alloys. The thermal history predicted via simulation at the joint interface was within the temperature range of 368–477 °C and was highly congruent with that obtained in the actual experiment, approximately 300–450 °C. In the actual experiment, joint delamination occurred, ascribable to the residual stress accumulation and multiple additive manufacturing (AM) thermal cycles on the brittle FeTi and Fe2Ti intermetallic joint interface. The build deflected to the side at an angle of 0.708° after the simulation. This study could serve as a valid reference for engineers to understand the residual stress development in 17-4PH and Ti-6Al-4V joints fabricated with AM.


2009 ◽  
Vol 24 (S1) ◽  
pp. S22-S25
Author(s):  
Y. B. Guo ◽  
S. Anurag

Hard turning, i.e., turning hardened steels, may produce the unique “hook” shaped residual stress (RS) profile characterized by surface compressive RS and subsurface maximum compressive RS. However, the formation mechanism of the unique RS profile is not yet known. In this study, a novel hybrid finite element modeling approach based on thermal-mechanical coupling and internal state variable plasticity model has been developed to predict the unique RS profile patterns by hard turning AISI 52100 steel (62 HRc). The most important controlling factor for the unique characteristics of residual stress profiles has been identified. The transition of maximum residual stress at the surface to the subsurface has been recovered by controlling the plowed depth. The predicted characteristics of residual stress profiles favorably agree with the measured ones. In addition, friction coefficient only affects the magnitude of surface residual stress but not the basic shape of residual stress profiles.


2008 ◽  
Vol 59 ◽  
pp. 299-303
Author(s):  
K. Mergia ◽  
Marco Grattarola ◽  
S. Messoloras ◽  
Carlo Gualco ◽  
Michael Hofmann

In plasma facing components (PFC) for nuclear fusion reactors tungsten or carbon based tiles need to be cooled through a heat sink. The joint between the PFC and the heat sink can be realized using a brazing process through the employment of compliant layer of either a low yield material, like copper, or a high yield material, like molybdenum. Experimental verification of the induced stresses during the brazing process is of vital importance. Strains and residual stresses have been measured in Mo/CuCrZr brazed tiles using neutron diffraction. The strains and stresses were measured in Mo tile along the weld direction and at different distances from it. The experimental results are compared with Finite Element Simulations.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Author(s):  
Partha Rangaswamy ◽  
N. Jayaraman

Abstract In metal matrix composites residual stresses developing during the cool-down process after consolidation due to mismatch in thermal expansion coefficients between the ceramic fibers and metal matrix have been predicted using finite element analysis. Conventionally, unit cell models consisting of a quarter fiber surrounded by the matrix material have been developed for analyzing this problem. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, models based on the conventional unit cell (one quarter fiber), one fiber, two fibers have been analyzed. In addition, using the element birth/death options available in the FEM code, the surface layer removal process that is conventionally used in the residual stress measuring technique has been simulated in the model. Such layer removal technique allows us to determine the average surface residual stress after each layer is removed and a direct comparison with experimental results are therefore possible. The predictions are compared with experimental results of an eight-ply unidirectional composite with Ti-24Al-11 Nb as matrix material reinforced with SCS-6 fibers.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


Sign in / Sign up

Export Citation Format

Share Document