scholarly journals Large-Area and Ultrathin MEMS Mirror Using Silicon Micro Rim

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 754
Author(s):  
Myeong-Su Ahn ◽  
Jaehun Jeon ◽  
Kyung-Won Jang ◽  
Ki-Hun Jeong

A large-area and ultrathin MEMS (microelectromechanical system) mirror can provide efficient light-coupling, a large scanning area, and high energy efficiency for actuation. However, the ultrathin mirror is significantly vulnerable to diverse film deformation due to residual thin film stresses, so that high flatness of the mirror is hardly achieved. Here, we report a MEMS mirror of large-area and ultrathin membrane with high flatness by using the silicon rim microstructure (SRM). The ultrathin MEMS mirror with SRM (SRM-mirror) consists of aluminum (Al) deposited silicon nitride membrane, bimorph actuator, and the SRM. The SRM is simply fabricated underneath the silicon nitride membrane, and thus effectively inhibits the tensile stress relaxation of the membrane. As a result, the membrane has high flatness of 10.6 m−1 film curvature at minimum without any deformation. The electrothermal actuation of the SRM-mirror shows large tilting angles from 15° to −45° depending on the applied DC voltage of 0~4 VDC, preserving high flatness of the tilting membrane. This stable and statically actuated SRM-mirror spurs diverse micro-optic applications such as optical sensing, beam alignment, or optical switching.

Author(s):  
C. C. Ahn ◽  
S. Karnes ◽  
M. Lvovsky ◽  
C. M. Garland ◽  
H. A. Atwater ◽  
...  

The bane of CCD imaging systems for transmission electron microscopy at intermediate and high voltages has been their relatively poor modulation transfer function (MTF), or line pair resolution. The problem originates primarily with the phosphor screen. On the one hand, screens should be thick so that as many incident electrons as possible are converted to photons, yielding a high detective quantum efficiency(DQE). The MTF diminishes as a function of scintillator thickness however, and to some extent as a function of fluorescence within the scintillator substrates. Fan has noted that the use of a thin layer of phosphor beneath a self supporting 2μ, thick Al substrate might provide the most appropriate compromise for high DQE and MTF in transmission electron microcscopes which operate at higher voltages. Monte Carlo simulations of high energy electron trajectories reveal that only little beam broadening occurs within this thickness of Al film. Consequently, the MTF is limited predominantly by broadening within the thin phosphor underlayer. There are difficulties however, in the practical implementation of this design, associated mostly with the mechanical stability of the Al support film.


2002 ◽  
Vol 722 ◽  
Author(s):  
T. S. Sriram ◽  
B. Strauss ◽  
S. Pappas ◽  
A. Baliga ◽  
A. Jean ◽  
...  

AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.


Author(s):  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
N. A. Sokolova

The work deals with topical issues such as development of composite nanostructured powder materials. The results of creating powders based on the system “aluminum–nitride of silicon” are presented. Complex investigations of the composition, structure and properties of powder materials, as well as coatings formed on their basis by supersonic cold gas dynamic spraying, were carried out. It has been found that the high-energy treatment of a powder mixture of aluminum with nanofibers of silicon nitride provides the formation of a composite powder in which a new phase of the Si(1-х)AlхO(1-х)Nх type is formed, which additionally increases the hardness in the coatings to be sprayed.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


1985 ◽  
Vol 45 ◽  
Author(s):  
Y. Hayafuji ◽  
A. Shibata ◽  
T. Yanada ◽  
A. Sawada ◽  
S. Usui ◽  
...  

ABSTRACTThe line-shaped electron beam annealing system which generates an electron beam of a length of 4 cm and a width af less than 100 um with a high energy density exceeding well over 100 kW/cm2 was developed for the first time with a purpose of SOI processing as its primary application. An pccelaration voltage of up to 20 kV can be used in this system. Seeded single crystalline islands with areas several mm long and 30 to 100 um in width were obtained by a single scan of the electron beam. The electron beam is generated in a pulsed way in the system due to the power restriction of the power supplies. An area of 4×5 cm2 was processed by a single scan of an electron beam at a sample speed of 530 cm/sec and a beam duration of 9.5 msec. The scanning area for one scan is determined by the beam length and the duration of the beam and sample speed.The present system could give single crystalline silicon films without any grain boundaries. The electron mobility of the electron beam recrystallized films, obtained from FETs made as a vehicle to test the electrical properties of the films, was comparable to that of the bulk silicon. A very rapid migration of silicon atoms in solid polycrystalline silicon films, which is controllable by process parameters, was also found with a migration speed of the order of 1 m/sec in a capped structure. The present electron beam system is useful in studying basic mechanisms of crystal growth in thin films. The system can have a very high throughput, a desirable feature in semiconductor industry. The present system can also be used to study the rapid thermal treatment of materials other than semiconductors including rapidly solidified materials.


2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

2013 ◽  
Vol 56 (10) ◽  
pp. 2398-2402 ◽  
Author(s):  
Wei Si ◽  
JingJie Sha ◽  
Lei Liu ◽  
YingHua Qiu ◽  
YunFei Chen

2008 ◽  
Vol 1069 ◽  
Author(s):  
Ryoji Kosugi ◽  
Toyokazu Sakata ◽  
Yuuki Sakuma ◽  
Tsutomu Yatsuo ◽  
Hirofumi Matsuhata ◽  
...  

ABSTRACTIn practical use of the SiC power MOSFETs, further reduction of the channel resistance, high stability under harsh environments, and also, high product yield of large area devices are indispensable. Pn diodes with large chip area have been already reported with high fabrication yield, however, there is few reports in terms of the power MOSFETs. To clarify the difference between the simple pn diodes and power MOSFETs, we have fabricated four pn-type junction TEGs having the different structural features. Those pn junctions are close to the similar structure of DIMOS (Double-implanted MOS) step-by-step from the simple pn diodes. We have surveyed the V-I characteristics dependence on each structural features over the 2inch wafer. Before their fabrication, we formed grid patterns with numbering over the 2inch wafer, then performed the synchrotron x-ray topography observation. This enables the direct comparison the electrical and spectrographic characteristics of each pn junctions with the fingerprints of defects.Four structural features from TypeA to TypeD are as follows. TypeA is the most simple structure as same as the standard pn diodes formed by Al+ ion implantation (I/I), except that the Al+ I/I condition conforms to that of the p-well I/I in the DIMOS. The JTE structure was used for the edge termination on all junctions. While the TypeA consists of one p-type region, TypeB and TypeC consists of a lot of p-wells. The difference of Type B and C is a difference of the oxide between the adjacent p-wells. The oxide of TypeB consists of the thick field oxide, while that of TypeC consists of the thermal oxide corresponding to the gate oxide in the DIMOS. In the TypeD structure, n+ region corresponding to the source in the DIMOS was added by the P+ I/I. The TypeD is the same structure of the DIMOS, except that the gate and source contacts are shorted. The V-I measurements of the pn junctions are performed using the KEITHLEY 237 voltage source meters with semi-auto probe machine. An active area of the fabricated pn junctions TEGs are 150um2 and 1mm2. Concentration and thickness of the drift layer are 1e16cm−3 and 10um, respectively.In order to compare the V-I characteristics of fabricated pn junctions with their defects information that obtained from x-ray topography measurements directly, the grid patterns are formed before the fabrication. The grid patterns were formed over the 2inch wafer by the SiC etching. The synchrotron x-ray topography measurements are carried out at the Beam-Line 15C in Photon-Factory in High-Energy-Accelerator-Research-Organization. Three diffraction conditions, g=11-28, -1-128, and 1-108, are chosen in grazing-incidence geometry (improved Berg-Barrett method).In the presentation, the V-I characteristics mapping on the 2inch wafer for each pn junctions, and the comparison of V-I characteristics with x-ray topography will be reported.


Sign in / Sign up

Export Citation Format

Share Document