scholarly journals Photothermal Agarose Microfabrication Technology for Collective Cell Migration Analysis

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1015
Author(s):  
Mitsuru Sentoku ◽  
Hiromichi Hashimoto ◽  
Kento Iida ◽  
Masaharu Endo ◽  
Kenji Yasuda

Agarose photothermal microfabrication technology is one of the micropatterning techniques that has the advantage of simple and flexible real-time fabrication even during the cultivation of cells. To examine the ability and limitation of the agarose microstructures, we investigated the collective epithelial cell migration behavior in two-dimensional agarose confined structures. Agarose microchannels from 10 to 211 micrometer width were fabricated with a spot heating of a focused 1480 nm wavelength infrared laser to the thin agarose layer coated on the cultivation dish after the cells occupied the reservoir. The collective cell migration velocity maintained constant regardless of their extension distance, whereas the width dependency of those velocities was maximized around 30 micrometer width and decreased both in the narrower and wider microchannels. The single-cell tracking revealed that the decrease of velocity in the narrower width was caused by the apparent increase of aspect ratio of cell shape (up to 8.9). In contrast, the decrease in the wider channels was mainly caused by the increase of the random walk-like behavior of component cells. The results confirmed the advantages of this method: (1) flexible fabrication without any pre-designing, (2) modification even during cultivation, and (3) the cells were confined in the agarose geometry.

BioTechniques ◽  
2013 ◽  
Vol 54 (2) ◽  
Author(s):  
Benjamin Slater ◽  
Camila Londono ◽  
Alison P. McGuigan

Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 659
Author(s):  
Mazlee Bin Mazalan ◽  
Mohamad Anis Bin Ramlan ◽  
Jennifer Hyunjong Shin ◽  
Toshiro Ohashi

Collective cell migration is an essential phenomenon in many naturally occurring pathophysiological processes, as well as in tissue engineering applications. Cells in tissues and organs are known to sense chemical and mechanical signals from the microenvironment and collectively respond to these signals. For the last few decades, the effects of chemical signals such as growth factors and therapeutic agents on collective cell behaviors in the context of tissue engineering have been extensively studied, whereas those of the mechanical cues have only recently been investigated. The mechanical signals can be presented to the constituent cells in different forms, including topography, substrate stiffness, and geometrical constraint. With the recent advancement in microfabrication technology, researchers have gained the ability to manipulate the geometrical constraints by creating 3D structures to mimic the tissue microenvironment. In this study, we simulate the pore curvature as presented to the cells within 3D-engineered tissue-scaffolds by developing a device that features tortuous microchannels with geometric variations. We show that both cells at the front and rear respond to the varying radii of curvature and channel amplitude by altering the collective migratory behavior, including cell velocity, morphology, and turning angle. These findings provide insights into adaptive migration modes of collective cells to better understand the underlying mechanism of cell migration for optimization of the engineered tissue-scaffold design.


2017 ◽  
Author(s):  
Linus J. Schumacher ◽  
Philip K. Maini ◽  
Ruth E. Baker

AbstractCell population heterogeneity is increasingly a focus of inquiry in biological research. For example, cell migration studies have investigated the heterogeneity of invasiveness and taxis in development, wound healing, and cancer. However, relatively little effort has been devoted to explore when heterogeneity is mechanistically relevant and how to reliably measure it. Statistical methods from the animal movement literature offer the potential to analyse heterogeneity in collections of cell tracking data. A popular measure of heterogeneity, which we use here as an example, is the distribution of delays in directional cross-correlation. Employing a suitably generic, yet minimal, model of collective cell movement in three dimensions, we show how using such measures to quantify heterogeneity in tracking data can result in the inference of heterogeneity where there is none. Our study highlights a potential pitfall in the statistical analysis of cell population heterogeneity, and we argue this can be mitigated by the appropriate choice of null models.Highlightsgroups of identical cells appear heterogeneous due to limited sampling and experimental repeatabilityheterogeneity bias increases with attraction/repulsion between cellsmovement in confined environments decreases apparent heterogeneityhypothetical applications in neural crest and in vitro cancer systemsIn BriefWe use a mathematical model to show how cell populations can appear heterogeneous in their migratory characteristics, even though they are made up of identically-behaving individual cells. This has important consequences for the study of collective cell migration in areas such as embryo development or cancer invasion.


2016 ◽  
Vol 212 (5) ◽  
pp. 487-489 ◽  
Author(s):  
Tomke Stürner ◽  
Gaia Tavosanis

Dynamic rearrangements of the actin cytoskeleton are crucial for cell shape and migration. In this issue, Squarr et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201508081) show that the cadherin superfamily protein Fat2 regulates actin-rich protrusions driving collective cell migration during Drosophila melanogaster egg morphogenesis through its interaction with the WAVE regulatory complex.


2021 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Hiromichi Hashimoto ◽  
Mitsuru Sentoku ◽  
Kento Iida ◽  
Kenji Yasuda

Collective cell migration is thought to be a dynamic and interactive behavior of cell cohorts that is essential for diverse physiological developments in living organisms. Recent studies revealed that the topographical properties of the environment regulate the migration modes of cell cohorts, such as diffusion versus contraction relaxation transport and the appearance of vortices in larger available space. However, conventional in vitro assays fail to observe changes in cell behavior in response to the structural changes. In this study, we developed a method to fabricate the flexible three-dimensional structures of capillary microtunnels to examine the behavior of vascular endothelial cells (ECs). Microtunnels with altering diameters were formed inside gelatin gel through spot heating a portion of gelatin by irradiating the µm-sized absorption at the tip of the microneedle with a focused permeable 1064 nm infrared laser. The ECs moved and spread two-dimensionally on the inner surface of the capillary microtunnels as a monolayer instead of filling the capillary. In contrast to the 3D straight topographical constraint, which exhibited width-dependent migration velocity, the leading ECs altered its migration velocity according to the change in the supply of cells behind the leading ECs, caused by their progression through the diameter-altering structure. Our findings provide insights into the collective migration modes inside 3D confinement structures, including their fluid-like behavior and the conservation of cell numbers.


2021 ◽  
Author(s):  
Mark Skamrahl ◽  
Hongtao Pang ◽  
Maximilian Ferle ◽  
Jannis Gottwald ◽  
Angela Rübeling ◽  
...  

AbstractTight junctions are pivotal components of epithelial tissues connecting neighboring cells to provide protective barriers. However, explicit knowledge of their role during other crucial biological processes, such as collective cell migration, remains sparse. Here, the importance of the tight junction proteins ZO1 and ZO2 for epithelial migration is investigated employing video microscopy in conjunction with velocimetry, segmentation, cell tracking, and atomic force microscopy/spectroscopy. The results indicate that ZO proteins are necessary for fast and coherent migration. In particular, ZO1 and 2 loss induces actomyosin remodeling away from the central cortex towards the periphery of individual cells, resulting in altered viscoelastic properties. A tug-of-war emerges between two cell populations with distinct morphological and mechanical properties: 1) smaller and highly contractile cells with an outwards bulged apical membrane, and 2) larger, flattened cells, which, due to tensile stress, display a higher proliferation rate. In response, the cell density increases, leading to crowding- induced jamming and more small cells over time. These smaller cells are particularly immobile and therefore drive jamming. Knockout of only ZO1 induces a similar but less pronounced behavior. This study shows that ZO proteins are necessary for efficient collective cell migration by maintaining tissue fluidity and controlling proliferation.


2019 ◽  
Author(s):  
Hsieh-Fu Tsai ◽  
Joanna Gajda ◽  
Tyler F.W. Sloan ◽  
Andrei Rares ◽  
Amy Q. Shen

AbstractStain-free, single-cell segmentation and tracking is tantamount to the holy grail of microscopic cell migration analysis. Phase contrast microscopy (PCM) images with cells at high density are notoriously difficult to segment accurately; thus, manual segmentation remains the de facto standard practice. In this work, we introduce Usiigaci, an all-in-one, semi-automated pipeline to segment, track, and visualize cell movement and morphological changes in PCM. Stain-free, instance-aware segmentation is accomplished using a mask regional convolutional neural network (Mask R-CNN). A Trackpy-based cell tracker with a graphical user interface is developed for cell tracking and data verification. The performance of Usiigaci is validated with electrotaxis of NIH/3T3 fibroblasts. Usiigaci provides highly accurate cell movement and morphological information for quantitative cell migration analysis.


Sign in / Sign up

Export Citation Format

Share Document