scholarly journals Metabacillus schmidteae sp. nov., Cultivated from Planarian Schmidtea mediterranea Microbiota

2021 ◽  
Vol 12 (2) ◽  
pp. 299-316
Author(s):  
Luis Johnson Kangale ◽  
Didier A. Raoult ◽  
Eric Ghigo ◽  
Pierre-Edouard Fournier

Taxonogenomics combines phenotypic assays and genomic analysis as a means of characterizing novel strains. We used this strategy to study Marseille-P9898T strain, an aerobic, motile, Gram-negative, spore-forming, and rod-shaped bacterium isolated from planarian Schmidtea mediterranea. Marseille-P9898T is catalase-positive and oxidase-negative. The major fatty acids detected are 12-methyl-tetradecanoic acid, 13-methyl-tetradecanoic acid, and hexadecanoic acid. Marseille-P9898T strain shared more than 98% sequence similarity with the Metabacillus niabensis strain 4T19T (98.99%), Metabacillus halosaccharovorans strain E33T (98.75%), Metabacillus malikii strain NCCP-662T (98.19%), and Metabacillus litoralis strain SW-211T (97.15%). Marseille-P9898 strain belongs to Metabacillus genus. Genomic analysis revealed the highest similarities with Ortho-ANI and dDDH, 85.76% with Metabacillus halosaccharovorans, and 34.20% with Bacillus acidicola, respectively. These results show that the Marseille-P9898T strain is a novel bacterial species from Metabacillus genus, for which we propose the name of Metabacillus schmidteae sp. nov. (Type strain Marseille-P9898T = CSUR P9898T = DSM 111480T).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Johnson Kangale ◽  
Didier Raoult ◽  
Eric Ghigo ◽  
Pierre-Edouard Fournier

AbstractMarseille-P9602T is a Chryseobacterium-like strain that we isolated from planarian Schmidtea mediterranea and characterized by taxono-genomic approach. We found that Marseille-P9602T strain exhibits a 16S rRNA gene sequence similarity of 98.76% with Chryseobacterium scophthalmum LMG 13028T strain, the closest phylogenetic neighbor. Marseille-P9602T strain was observed to be a yellowish-pigmented, Gram-negative, rod-shaped bacterium, growing in aerobic conditions and belonging to the Flavobacteriaceae family. The major fatty acids detected are 13-methyl-tetradecanoic acid (57%), 15-methylhexadecenoic acid (18%) and 12-methyl-tetradecanoic acid (8%). Marseille-P9602 strain size was found from genome assembly to be of 4,271,905 bp, with a 35.5% G + C content. The highest values obtained for Ortho-ANI and dDDH were 91.67% and 44.60%, respectively. Thus, hereby we unravel that Marseille-P9602 strain is sufficiently different from other closed related species and can be classified as a novel bacterial species, for which we propose the name of Chryseobacterium schmidteae sp. nov. Type strain is Marseille-P9602T (= CSUR P9602T = CECT 30295T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2021 ◽  
Author(s):  
Hyejin Oh ◽  
Myungkyum Kim ◽  
Sathiyaraj Sriniva

Abstract Two novel Gram-stain-negative, aerobic, rod-shaped, circular, convex, light-pink and white-coloured bacterial strains BT291T and BT350T were isolated from soil collected in Uijeongbu city (37° 44′ 55″ N, 127° 2′ 20″ E) and Jeju island (33° 22′ 48″ N, 126° 31′ 48″ E), respectively, South Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT291T and BT350T belong to a distinct lineage within the genus Microvirga (family Methylobacteriaceae, order Rhizobiales, class Alpha Proteobacteria, phylum Proteobacteria, kingdom Bacteria). The 16S rRNA gene sequence similarity between the two strains BT291T and BT350T was 97.4 %. The two strains were found to have the same quinone system, with Q-10 as the major respiratory quinone. The major polar lipids of strains BT291T and BT350T were phosphatidylethanolamine (PE), diphosphatydilglycerol (DPG), phosphatidylcholine (PC) and phosphatidylglycerol (PG). The major cellular fatty acids of strain BT291T were C18:1 ω7c (58.2 %) and cyclo-C19:0 ω8c (25.7 %). The major cellular fatty acids of strain BT350T were C18:1 ω7c (38.5 %) and cyclo-C19:0 ω8c (27.7 %). Based on the polyphasic analysis (phylogenetic, chemotaxonomic and biochemical), strains BT291T and BT350T can be suggested as two novel bacterial species within the genus Microvirga and the proposed names are Microvirga amygdalina and Microvirga alba, respectively. The type strain of Microvirga amygdalina is BT291T (= KCTC 72368T = NBRC 114845T) and the type strain of Microvirga alba is BT350T (= KCTC 72385T = NBRC 114848T).


2021 ◽  
Author(s):  
Babacar Mbaye ◽  
Cheikh Ibrahima LO ◽  
Niokhor Dione ◽  
Sarah Benabdelkader ◽  
Maryam Tidjani Alou ◽  
...  

Abstract Strains Marseille-P3761 and Marseille-P3195 are representatives of two bacterial species isolated from human specimens. Strain Marseille-P3761 was isolated from the stool of a healthy volunteer, while strain Marseille-P3915 was cultivated from the urine of a kidney transplant recipient. Both strains are anaerobic Gram-positive cocci bacteria. Both are catalase-negative and oxidase-negative and grow optimally at 37°C in anaerobic conditions. They also metabolize carbohydrates such as galactose, glucose, fructose, and glycerol. The major fatty acids were hexadecanoic acid for both strains, Marseille-P3761 (38%) and Marseille-P3195 (31%). The highest DNA-DNA hybridization values of Marseille-P3761 and Marseille-P3195 strains when compared to their closest phylogenetic relatives were 52.3% and 56.4%, respectively. The morphological, biochemical, phenotypic and genomic characteristics strongly support that these strains are new members of the Peptoniphilus genus. Thus, we suggest that strains Marseille-P3761 (CSUR P3761 = CCUG71569) and Marseille-P3195 (CSUR P3195 = DSM 103468) are the type strains of two new Peptoniphilus species, for which we propose the names Peptoniphilus colimassiliensis sp. nov. and Peptoniphilus urinimassiliensis sp. nov., respectively.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2770-2776 ◽  
Author(s):  
Rachel E. Muir ◽  
Man-Wah Tan

A yellow-pigmented, Gram-positive, aerobic, non-motile, non-spore-forming, irregular rod-shaped bacterium (strain TAN 31504T) was isolated from the bacteriophagous nematode Caenorhabditis elegans. Based on 16S rRNA gene sequence similarity, DNA G+C content of 69.5 mol%, 2,4-diaminobutyric acid in the cell-wall peptidoglycan, major menaquinone MK-11, abundance of anteiso- and iso-fatty acids, polar lipids diphosphatidylglycerol and phosphatidylglycerol and a number of shared biochemical characteristics, strain TAN 31504T was placed in the genus Leucobacter. DNA–DNA hybridization comparisons demonstrated a 91 % DNA–DNA relatedness between strain TAN 31504T and Leucobacter chromiireducens LMG 22506T indicating that these two strains belong to the same species, when the recommended threshold value of 70 % DNA–DNA relatedness for the definition of a bacterial species by the ad hoc committee on reconciliation of approaches to bacterial systematics is considered. Based on distinct differences in morphology, physiology, chemotaxonomic markers and various biochemical characteristics, it is proposed to split the species L. chromiireducens into two novel subspecies, Leucobacter chromiireducens subsp. chromiireducens subsp. nov. (type strain L-1T=CIP 108389T=LMG 22506T) and Leucobacter chromiireducens subsp. solipictus subsp. nov. (type strain TAN 31504T=DSM 18340T=ATCC BAA-1336T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1896-1901 ◽  
Author(s):  
Yaowanoot Promnuan ◽  
Takuji Kudo ◽  
Moriya Ohkuma ◽  
Panuwan Chantawannakul

Two novel actinomycetes, strains TA4-1T and TA4-8T, were isolated from the South-East Asian stingless bee (Tetragonilla collina Smith 1857), collected from Chiang Mai Province, Thailand. The morphological and chemotaxonomic properties of strains TA4-1T and TA4-8T were consistent with the genus Streptomyces , i.e. the formation of aerial mycelia bearing spiral spore chains, the presence of the ll-isomer of diaminopimelic acid in cell walls, iso- and anteiso-branched fatty acids with carbon chain lengths 14–17 atoms as the major fatty acids and MK-9(H8) as the predominant menaquinone plus minor amounts of MK-9(H6) and MK-9(H10). Analysis of 16S rRNA gene sequences showed that strains TA4-1T and TA4-8T exhibited 98.8 and 98.1 % sequence similarity, respectively, with Streptomyces chromofuscus NRRL B-12175T and 98.9 % sequence similarity with each other. This study suggested that strains TA4-1T and TA4-8T were distinct from previously described species of the genus Streptomyces . In addition, the low degrees of DNA–DNA relatedness between the isolates and S. chromofuscus JCM 4354T warranted assigning strains TA4-1T and TA4-8T to two novel species. The names Streptomyces chiangmaiensis sp. nov. (type strain TA4-1T  = JCM 16577T  = TISTR 1981T) and Streptomyces lannensis sp. nov. (type strain TA4-8T  = JCM 16578T  = TISTR 1982T) are proposed. The species names indicate the geographical locations where the stingless bees reside.


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Sooyeon Park ◽  
Siyu Chen ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

ABSTRACT A Gram-stain-negative bacterial strain, JBTF-M27T, was isolated from a tidal flat from Yellow Sea, Republic of Korea. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M27T fell within the clade comprising the type strains of Sulfitobacter species. Strain JBTF-M27T exhibited the highest 16S rRNA gene sequence similarity (98.8%) to the type strain of S. porphyrae. Genomic ANI and dDDH values of strain JBTF-M27T between the type strains of Sulfitobacter species were less than 76.1 and 19.2%, respectively. Mean DNA-DNA relatedness value between strain JBTF-M27T and the type strain of S. porphyrae was 21%. DNA G + C content of strain JBTF-M27T from genome sequence was 57.8% (genomic analysis). Strain JBTF-M27T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid. The major polar lipids of strain JBTF-M27T were phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M27T is separated from recognized Sulfitobacter species. On the basis of the data presented, strain JBTF-M27T ( = KACC 21648T = NBRC 114356T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter sediminilitoris sp. nov. is proposed.


2007 ◽  
Vol 57 (8) ◽  
pp. 1765-1769 ◽  
Author(s):  
Yu Zhou ◽  
Jing Dong ◽  
Xu Wang ◽  
Xing Huang ◽  
Ke-Yun Zhang ◽  
...  

A Gram-negative, non-motile, rod-shaped bacterial strain, designated CW-E 2T, was isolated from a polluted soil sample collected from Jiangsu Province, China. A taxonomic study of the isolate, including phylogenetic analysis based on 16S rRNA gene sequences and phenotypic characteristics, was carried out. The predominant menaquinone was MK-6 and the major fatty acids were i-C15 : 0, i-C17 : 0 3-OH, i-C17 : 1 ω9c and summed feature 4. The G+C content of the DNA was 37.2 mol%. Based on phenotypic and genotypic characteristics, strain CW-E 2T represents a novel species of the genus Chryseobacterium for which the name Chryseobacterium flavum sp. nov. is proposed. The type strain is CW-E 2T (=KCTC 12877T=CCTCC AB 206147T).


2004 ◽  
Vol 54 (3) ◽  
pp. 693-697 ◽  
Author(s):  
Midori Kurahashi ◽  
Akira Yokota

Six bacterial strains were isolated from healthy marine organisms that were collected from the coast of the Kanto area in Japan. Phylogenetic analysis based on 16S rDNA sequence similarity showed that the six isolates formed a separate cluster in the γ-Proteobacteria and were related to the genera Alteromonas and Glaciecola (<91·6 % similarity). The isolates were related closely to each other (DNA–DNA reassociation values of 74–93 %). The isolates had a polar flagellum and were Gram-negative, mesophilic, strictly aerobic rods that required salt for growth. Distinct phenotypic features of this group included the ability to hydrolyse agar and white pigmentation of colonies. The DNA G+C content of the isolates was 48–50 mol%. The major quinone was Q-8. Phenotypic characteristics of the isolates differed from those of members of the genera Alteromonas and Glaciecola. The name Agarivorans albus gen. nov., sp. nov. is proposed for the six isolates; the type strain is MKT 106T (=IAM 14998T=LMG 21761T).


Sign in / Sign up

Export Citation Format

Share Document