scholarly journals Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes

2019 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Bernd Wemheuer ◽  
Torsten Thomas ◽  
Franziska Wemheuer

Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L. perenne in 2010 and 2011, respectively. Taken together, our research provides a basis for future studies on responses of fungal endophytes towards management practices. To the best of our knowledge, this is the first study simultaneously assessing fungal endophyte communities in aerial parts of three agriculturally important grass species over two consecutive years.

Botany ◽  
2015 ◽  
Vol 93 (4) ◽  
pp. 233-241 ◽  
Author(s):  
James S. Santangelo ◽  
Nash E. Turley ◽  
Marc T.J. Johnson

Plant – fungal endophyte interactions are common in nature and they can shape the ecology of plants. Vertically transmitted endophytes are hypothesized to serve as mutualists, protecting plants from herbivores. If this hypothesis is true, then we expect endophytes to be most abundant in the presence of herbivores and least abundant in their absence, assuming endophytes incur a cost to their host. We tested this prediction by studying the effects of intense rabbit (Oryctolagus cuniculus Linnaeus) grazing on grass–endophyte interactions at Silwood Park, UK. We examined seeds of red fescue (Festuca rubra L.) collected from 15 natural populations that were protected from rabbits for 0.3–21 years. Contrary to our prediction, the mean proportion of seeds with endophytes increased 1.84×, from 0.45 to 0.83, following 21 years of rabbit exclusion. To better understand the mechanisms driving this increase in frequency, we conducted a fully factorial greenhouse experiment where we manipulated the presence or absence of endophyte infection, intraspecific competition, and simulated grazing on F. rubra plants. In both damaged and undamaged treatments, infected plants produced approximately twice as much biomass as uninfected plants, and endophytes did not influence tolerance to herbivory. These results suggest that endophytes directly change plant growth but not compensatory responses to damage. In the absence of competitors, infected plants produced 2.17× more biomass than uninfected plants, whereas in the presence of competitors, infected plants produced only 1.55× more biomass than uninfected plants. This difference suggests that intraspecific competition might lessen the benefits of endophyte infection. Our results do not support the defensive mutualism hypothesis, but instead suggest that endophyte-induced plant growth is important in shaping the costs and benefits of endophytes in our system.


2016 ◽  
Vol 27 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Sylwia Gołda ◽  
Jolanta Korzeniowska

AbstractThe aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF) and translocation factor (TF). All three tested species of grasses had TF < 1 and BF-root > 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.


2011 ◽  
Vol 62 (11) ◽  
pp. 1010 ◽  
Author(s):  
P. E. Gundel ◽  
I. Zabalgogeazcoa ◽  
B. R. Vázquez de Aldana

In diverse natural habitats of Europe, plants of Festuca rubra are commonly infected by the fungal endophyte Epichloë festucae. Under several circumstances, the association between the grass and the fungus has been shown to be mutualistic. Here, we conducted an experiment to study the differences in seed germination and mortality between infected (E+) and endophyte-free plants (E–) at different temperatures (12 and 25°C) and water potentials (0 and –0.5 MPa). Three half-sib lines of F. rubra, each composed of E+ and E– seeds, and derived from infected plants from semiarid grasslands were used. Although the endophyte effect depended on the incubation condition, germination percentage was significantly greater for E– (52%) than for E+ seeds (41%). Seed germination was more inhibited by the low water potential (75 v. 24% for –0.5 and 0.0 MPa, respectively), than by the high temperature (64 v. 35% for 25 and 12°C, respectively). However, mortality was highly dependent on the interaction between plant genotype and endophyte, and between temperature and water condition. It is remarkable that while highly dependent on the host genotype, there was a clear effect of endophyte increasing seed survival, especially in those treatments that were unfavourable for germination. For example, in the more restrictive treatment (25°C and –0.5 MPa), seed survival was on average, 44 and 39% for E+ and E–, respectively. In general, the endophyte affected seed characteristics of F. rubra by reducing the percentage of germination, but simultaneously increasing seed survival.


2020 ◽  
Vol 4 (3) ◽  
pp. 252-267 ◽  
Author(s):  
Benoit Laurent ◽  
Marylise Marchand ◽  
Emilie Chancerel ◽  
Gilles Saint-Jean ◽  
Xavier Capdevielle ◽  
...  

Botryosphaeriaceae are a diverse group of endophytic fungi colonizing the inner tissue of many woody species. As opportunist pathogens, they have been increasingly involved in diebacks worldwide. Nonetheless, the diversity of Botryosphaeriaceae, especially in asymptomatic plants, remains largely unknown. Using an innovative and mixed strategy of metabarcoding, this study aims to investigate the diversity of the fungal endophyte community, with a focus on Botryosphaeriaceae, which colonize grapevine and adjacent oak and pine trees in a French landscape. These data were used to test if the differentiation between hosts is more important than geographical effects for shaping the Botryosphaeriaceae communities and whether that similarity is higher between communities of grapevine and oak (both Angiosperms) than between oak and pine trees. We revealed a high level of diversity in Botryosphaeriaceae fungi, in both grapevines and forest trees, with a greater richness for grapevines. Contrasting results were obtained for the endophytic community, which was more diverse in forest trees. Our results support the hypothesis that host factors prevail on geographic effects to explain the diversity of Botryosphaeriaceae at the studied spatial scale. However, the features of the agroecosystem, such as management practices, were suggested to be more important than phylogeny to structure the fungal community. This highlights the importance of management practices for the microbiome of plants. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Ruying Wang ◽  
Simin Luo ◽  
Bruce B. Clarke ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra subsp. rubra) is a commercially important low-maintenance turfgrass and is often naturally infected with the fungal endophyte Epichloë festucae. Epichloë spp. are endophytes of several cool-season grass species, often conferring insect resistance to the grass hosts due to the production of toxic alkaloids. In addition to insect resistance, a unique feature of the strong creeping red fescue/E. festucae symbiosis is the endophyte-mediated disease resistance to the fungal pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Such disease resistance is not a general feature of other grass/ Epichloë interactions. E. festucae isolates infecting red fescue have an antifungal protein gene Efe-afpA, whereas most other Epichloë spp. do not have a similar gene. The uniqueness of this gene suggests it may, therefore, be a component of the unique disease resistance seen in endophyte-infected red fescue. Here, we report the generation of CRISPR-Cas9 Efe-afpA gene knockouts with the goal of determining if absence of the protein in endophyte-infected Festuca rubra leads to disease susceptibility. However, it was not possible to infect plants with the knockout isolates, although infection was possible with the wild type E. festucae and with complemented isolates. This raises the interesting possibility that, in addition to having antifungal activity, the protein is required for the symbiotic interaction. The antifungal protein is a small secreted protein with high expression in planta relative to its expression in culture, all characteristics consistent with effector proteins. If Efe-AfpA is an effector protein it must be specific to certain interactions, since most Epichloë spp. do not have such a gene in their genomes.


Author(s):  
Róbert Kun ◽  
Dániel Babai ◽  
András István Csathó ◽  
Csaba Vadász ◽  
Nikoletta Kálmán ◽  
...  

AbstractLocal, adaptive traditional grassland management systems have played a fundamental role in the creation, maintenance and conservation of high nature value (HNV) grasslands. The state of diverse HNV grasslands has deteriorated across Europe in conjunction with changes in various management factors, such as management type and management intensity. To conserve the species-rich vegetation of HNV grasslands and to avoid undesirable shifts in plant functional type dominance, it is important to explore the effects of management factors crucial for nature conservation and to adapt them to local circumstances. In our study, we focus on three of the main factors in the management of valuable meadow steppes in the Great Hungarian Plain region (Central Hungary). We studied management types (mowing, grazing and combined), different levels of herbage removal intensity (low, medium, high) and spatio-temporal complexity (low, medium and high) of grassland management. Altogether 172 plots (1 m × 1 m) were designated in 17 sites. Plant diversity indexes and plant functional types were calculated according to the presence and percentage cover of plant species in the plots. Regarding plant diversity and the dominance of plant functional types, herbage removal intensity and spatio-temporal complexity of management had, for the most part, stronger effects than the type of management. Higher spatio-temporal complexity of management resulted in higher plant diversity, while higher intensity of management led to significantly lower diversity. Proper application of type, intensity and spatio-temporal complexity of management practices (separately and in combination) proved to be determining factors in the long-term maintenance and conservation of diversity and species composition of HNV grasslands.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


1992 ◽  
Vol 70 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Jeffrey G. Duckett ◽  
Roberto Ligrone

The ventral epidermal cells of the photosynthetic, surface-living gametophytes of Lycopodium cernuum, collected from moist shaded banks in Peninsular Malaysia, contain an aseptate fungus. In some cells the hyphae are thick walled and form coils encapsulated by a thin layer of host wall material. In others the fungus is thin walled and shows limited differentiation into larger trunk hyphae and arbuscules. The adjacent host cytoplasm, separated from the fungus by a granular interfacial matrix, contains numerous chloroplasts, mitochondria, and microtubules. The hyphae contact the substratum via the ventral walls of the epidermal cells and the rhizoids are free from infection. In the protocorm and root nodules, aseptate hyphae initially colonize mucilage-filled schizogenous intercellular spaces. Subsequent invasion of the host cells is associated with the development of massive overgrowths of host wall material. The fungal associations in L. cernuum share a mixture of attributes otherwise found in different angiosperm mycorrhizae and in mycotrophic relationships in liverworts. Wall ingrowths are present in both the gametophyte and sporophyte cells in the placenta of L. cernuum. The very limited development of the placenta, compared with L. appressum, certain bryophytes and ferns, the diminutive size, and early senescence of the gametophytes of L. cernuum are all linked to the presence of the protocorm. This massive absorptive organ, homologous to a foot, in terms of its position in sporophyte ontogeny, but external to the parent gametophyte, derives its nutrition partly from photosynthesis and partly from its fungal endophyte. Key words: chloroplasts, Lycopodium, mycorrhiza, pteridophytes, root nodules, symbiosis, transfer cells.


1970 ◽  
Vol 50 (6) ◽  
pp. 685-691 ◽  
Author(s):  
J. R. LESSARD ◽  
M. HIDIROGLOU ◽  
R. B. CARSON ◽  
J. M. WAUTHY

Each of the species birdsfoot trefoil (Lotus corniculatus L.), timothy (Phleum pratense L.), bromegrass (Bromus inermis Leyss.), orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinacea L.) and creeping red fescue (Festuca rubra L.) was grown in the field on 10 plots sampled at weekly intervals in rotation from June 13. Each plot was resampled after 6 weeks and all samples were analyzed for copper, molybdenum and sulfur. In most species, levels of Cu and Mo were highest in the early samplings and decreased with advancing maturity. Second-cut samples tended to be higher in Cu, Mo and S than first-cut samples. The S content was more uniform in the first cycle but increased considerably in the second cycle, especially in reed canarygrass. The ranges in Cu content were 7.4 to 14.1 ppm for birdsfoot trefoil and 3.7 to 11.4 ppm for the grasses. Mo ranged from 1.9 to 8.1 ppm in birdsfoot trefoil and from 1.0 to 6.5 ppm in the grasses. The overall range in S content was from 0.14 to 0.95%. The mineral composition of the crops is discussed in relation to the requirement of ruminants for these three elements.


Sign in / Sign up

Export Citation Format

Share Document