scholarly journals Antimicrobial and Anti-inflammatory Lingonberry Mouthwash — A Clinical Pilot Study in the Oral Cavity

2019 ◽  
Vol 7 (9) ◽  
pp. 331 ◽  
Author(s):  
Pärnänen ◽  
Nikula-Ijäs ◽  
Sorsa

Fermented lingonberry juice was designed to be used as a mouthwash. Our aim was to study the antimicrobial and anti-inflammatory effects of the mouthwash in the oral cavity. A clinical study of 30 adult participants was performed. A total of 20 participants used 10 mL of the mouthwash twice daily for two weeks and 10 participants used 20 mL twice daily for one week. Streptococcus mutans, Candida and Lactobacilli were cultivated at the beginning, after the mouthwash period and after a washout period. At the same timepoints an additional oral mouthrinse was collected for chair-side/point-of-care (POC)-PerioSafe®/OraLyzer® aMMP-8 quantitative on-line evaluation, and an oral clinical investigation was performed. Mean Streptococcus mutans and Candida counts, visible plaque index (VPI) and bleeding on probing (BOP) were reduced, and Lactobacilli counts increased during the lingonberry mouthwash period. The aMMP-8 mouthrinses showed reduced values in both test groups when compared to the startpoint. The mouthrinse aMMP-8 reduction correlated with the reductions in microbial counts, VPI and BOP. Based on the results, fermented lingonberry juice seems a promising aid in oral homecare, diminishing the microbial and related proinflammatory burden by balancing the oral microbial flora and gradually lowering the inflammatory load in the oral cavity.

2020 ◽  
Vol 16 ◽  
Author(s):  
Chiara Fanali ◽  
Giovanni D’Orazio ◽  
Alessandra Gentili ◽  
Salvatore Fanali

: In this review paper, miniaturized techniques, including both electromigration and liquid chromatographic ones, have been considered discussing their main features in the analytical field for the separation and analysis of nonsteroidal anti-inflammatory drugs (NSAIDs). In capillary electrophoresis (CE) and nano-liquid chromatography (nano-LC), separation are performed in capillaries with internal diameter (I.D.) lower than 100 m and therefore flow rates in the range 100- 1000 nL/min are applied. Therefore due to the low flow rate, high mass sensitivity can be obtained. Usually conventional UV detectors are used on-line; however these techniques can be coupled with mass spectrometry (MS). CE and nano-LC have been also applied to the separation of NSAIDs using silica stationary phases (SP) modified with C18 promoting interaction with analytes mainly based on hydrophobic interaction. In addition the use of chiral SP resulted effective for the chiral resolution of these compounds. In addition to silica phases, monolithic (both organic and inorganic) material has also been used. Although most of the presented studies aimed to demonstrate the usefulness of the considered microfluidic techniques, some applications to real samples have also been reported.


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Author(s):  
Chinedu C. Ude ◽  
Shiv Shah ◽  
Kenneth S. Ogueri ◽  
Lakshmi S. Nair ◽  
Cato T. Laurencin

Abstract Purpose The knee joint is prone to osteoarthritis (OA) due to its anatomical position, and several reports have implicated the imbalance between catabolic and anabolic processes within the joint as the main culprit, thus leading to investigations towards attenuation of these inflammatory signals for OA treatment. In this review, we have explored clinical evidence supporting the use of stromal vascular fraction (SVF), known for its anti-inflammatory characteristics for the treatment of OA. Methods Searches were made on PubMed, PMC, and Google Scholar with the keywords “adipose fraction knee regeneration, and stromal vascular fraction knee regeneration, and limiting searches within 2017–2020. Results Frequently found interventions include cultured adipose-derived stem cells (ADSCs), SVF, and the micronized/microfragmented adipose tissue-stromal vascular fraction (MAT-SVF). Clinical data reported that joints treated with SVF provided a better quality of life to patients. Currently, MAT-SVF obtained and administered at the point of care is approved by the Food and Drug Administration (FDA), but more studies including manufacturing validation, safety, and proof of pharmacological activity are needed for SVF. The mechanism of action of MAT-SVF is also not fully understood. However, the current hypothesis indicates a direct adherence and integration with the degenerative host tissue, and/or trophic effects resulting from the secretome of constituent cells. Conclusion Our review of the literature on stromal vascular fraction and related therapy use has found evidence of efficacy in results. More research and clinical patient follow-up are needed to determine the proper place of these therapies in the treatment of osteoarthritis of the knee. Lay Summary Reports have implicated the increased inflammatory proteins within the joints as the main cause of osteoarthritis (OA). This has attracted interest towards addressing these inflammatory proteins as a way of treatment for OA. The concentrated cell-packed portion of the adipose product stromal vascular fraction (SVF) from liposuction or other methods possesses anti-inflammatory effects and has been acclaimed to heal OA. Thus, we searched for clinical evidence supporting their use, for OA treatment through examining the literature. Data from various hospitals support that joints treated with SVF provided a better quality of life to patients. Currently, there is at least one version of these products that are obtained and given back to patients during a single clinic visit, approved by the FDA.


Author(s):  
Peter Geller ◽  
Jaymie Stein ◽  
Daniel Du ◽  
Jason R. Webb ◽  
Zack Lieberman ◽  
...  

AbstractCurrent educational presentation software used in STEM education fail to maximize student engagement and comprehension. Mixed reality presentation is one specific type of digital presentation software that has shown to significantly improve student engagement and comprehension. In this paper, we describe a pilot study on adult scientists which evaluates the usage of an integrated mixed reality presentation software in the Zyndo platform as an enhanced alternative to Adobe PDFs. A group of adult scientists (N = 20), with higher education of at least a bachelor’s degree, from an academic research center at Harvard Medical School were randomized and asked to read two articles (one on Immunology and the other on Bioengineering) presented through either the mixed reality presentation or PDFs. Our results indicate that participants improved in nearly all metrics for engagement (ranging from + 4 to 51% improvement depending on engagement metric and subject matter) when viewing the mixed reality presentation over the traditional PDFs for both articles. Specifically, the participants demonstrated improved comprehension of the scientific content and time spent viewing the presentation in a content-dependent manner. Therefore, 3D mixed reality environments can potentially be applied to enhance student learning in STEM fields, particularly Biomedical Engineering in both on-line and in person classroom settings.


2021 ◽  
Vol 11 (7) ◽  
pp. 3232
Author(s):  
Jingyang Zhang ◽  
Sofiya-Roksolana Got ◽  
Iris Xiaoxue Yin ◽  
Edward Chin-Man Lo ◽  
Chun-Hung Chu

Studies have shown that silver diamine fluoride (SDF) is an effective agent to arrest and prevent dental caries due to its mineralizing and antibacterial properties. While plenty of studies have investigated the mineralizing properties, there are few papers that have examined its antibacterial effect on oral biofilm. The objective of this study was to identify the effect of silver diamine fluoride on oral biofilm. Method: The keywords used were (silver diamine fluoride OR silver diammine fluoride OR SDF OR silver fluoride OR AgF AND biofilm OR plaque). Two reviewers screened the titles and abstracts and then retrieved the full text of the potentially eligible publications. Publications of original research investigating the effect of SDF on oral biofilm were selected for this review. Results: This review included 15 laboratory studies and six clinical studies among the 540 papers identified. The laboratory studies found that SDF could prevent bacterial adhesion to the tooth surface. SDF also inhibited the growth of cariogenic bacteria, including Streptococcus mutans, Lactobacillus acidophilus, Streptococcus sobrinus, Lactobacillus rhamnosus, Actinomyces naeslundii, and Enterococcus faecalis, thus contributing to its success in caries arrest. One clinical study reported a decrease in Streptococcus mutans and Lactobacillus sp. in arrested caries after SDF treatment, and another clinical study found that SDF inhibited the growth of periodontitis microbiota, including Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia/nigrescens. However, three clinical studies reported no significant change in the microbial diversity of the plaque on the tooth after SDF treatment. Moreover, one laboratory study and one clinical research study reported that SDF inhibited the growth of Candida albicans. Conclusion: Not many research studies have investigated the effects of SDF on oral biofilm, although SDF has been used as a caries-arresting agent with antibacterial properties. However, a few publications have reported that SDF prevented bacterial adhesion to the teeth, inhibited the growth of cariogenic and periodontal bacteria, and possessed antifungal properties.


2014 ◽  
Vol 63 (8) ◽  
pp. 1111-1112 ◽  
Author(s):  
Amanda Samarawickrama ◽  
Emily Cheserem ◽  
Michelle Graver ◽  
Jim Wade ◽  
Sarah Alexander ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document