scholarly journals Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae

2019 ◽  
Vol 8 (1) ◽  
pp. 32
Author(s):  
Manuel Villalobos-Cid ◽  
Francisco Salinas ◽  
Eduardo I. Kessi-Pérez ◽  
Matteo De Chiara ◽  
Gianni Liti ◽  
...  

Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent “1002 yeast genomes project” has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the “1002 yeast genomes project”. We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the “1002 yeast genomes project”. We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes.

2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


2021 ◽  
Author(s):  
Ixchel Gonzalez-Ramirez ◽  
Sergio RS Cevallos-Ferriz ◽  
Carl Rothfels

Premise of study: El Chango is a recently discovered quarry that contains extremely well preserved fossils. The Cenomanian age of the locality corresponds to a time when the global flora was transitioning from gymnosperm- to angiosperm-dominated, yet conifers predominate in this locality. These fossils thus provide a rare opportunity to understand the replacement of conifers by angiosperms as the dominant group of plants. Methods: We collected material from El Chango in annual expeditions (2010 to 2014). We selected the three most abundant and best preserved conifer morphotypes and conducted a total-evidence (i.e., including molecular and morphological data) phylogenetic analysis of a sample of 72 extant conifer species plus the three fossils. We use these results to inform our taxonomic decisions. Results: We obtained four equally most-parsimonious trees (consistency index = 44.1%, retention index = 78.8%). Despite ambiguous relationships among some extant taxa, the three fossil conifers had the same phylogenetic position in all four most parsimonious trees; we describe these species as new: Sequoiadendron helicalancifolium sp. nov. (Cupressaceae), and Microcachrys rhomboidea sp. nov. and Dacrydium bifoliosus sp. nov (Podocarpaceae). The ecosystem is interpreted as a coastal humid mixed forest. Conclusions: Our findings contribute to the understanding of Cenomanian equatorialregions, and support the hypothesis of a geographically and ecologically structured rise of angiosperms, with conifers remaining dominant in brackish-water and angiosperms becoming dominant in freshwater-ecosystems. These fossils fill in gaps in the evolutionary history of lineages like Microcachrys, which we demonstrate occurred in the Northern hemisphere before becoming restricted to its current range (Tasmania).


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 49 ◽  
Author(s):  
Fabian Schreiber

Summary: Phylogenetic trees are widely used to represent the evolution of gene families. As the history of gene families can be complex (including lots of gene duplications), its visualisation can become a difficult task. A good/accurate visualisation of phylogenetic trees - especially on the web - allows easier understanding and interpretation of trees to help to reveal the mechanisms that shape the evolution of a specific set of gene/species. Here, I present treeWidget, a modular BioJS component to visualise phylogenetic trees on the web. Through its modularity, treeWidget can be easily customized to allow the display of sequence information, e.g. protein domains and alignment conservation patterns.Availability: http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.7707


Taxon ◽  
2012 ◽  
Vol 61 (2) ◽  
pp. 355-367 ◽  
Author(s):  
Steven B. Janssens ◽  
Yi Song Wilson ◽  
Yong-Ming Yuan ◽  
Anne Nagels ◽  
Erik F. Smets ◽  
...  

2006 ◽  
Vol 12 (2) ◽  
pp. 243-257 ◽  
Author(s):  
Ross Clement

The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.


2009 ◽  
Vol 75 (16) ◽  
pp. 5410-5416 ◽  
Author(s):  
Gabriele Margos ◽  
Stephanie A. Vollmer ◽  
Muriel Cornet ◽  
Martine Garnier ◽  
Volker Fingerle ◽  
...  

ABSTRACT Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8546 ◽  
Author(s):  
Arina L. Maltseva ◽  
Marina A. Varfolomeeva ◽  
Arseniy A. Lobov ◽  
Polina Tikanova ◽  
Marina Panova ◽  
...  

Background The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. Methods Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering—using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson–Foulds distance, the Fowlkes–Mallows index and cophenetic correlation. Results Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups (“saxatilis” and “obtusata” groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.


2020 ◽  
Author(s):  
Yuji Matsuo ◽  
Akinao Nose ◽  
Hiroshi Kohsaka

AbstractSpeed and trajectory of locomotion are characteristic traits of individual species. During evolution, locomotion kinematics is likely to have been tuned for survival in the habitats of each species. Although kinematics of locomotion is thought to be influenced by habitats, the quantitative relation between the kinematics and environmental factors has not been fully revealed. Here, we performed comparative analyses of larval locomotion in 11 Drosophila species. We found that larval locomotion kinematics are divergent among the species. The diversity is not correlated to the body length but is correlated instead to the minimum habitat temperature of the species. Phylogenetic analyses using Bayesian inference suggest that the evolutionary rate of the kinematics is diverse among phylogenetic trees. The results of this study imply that the kinematics of larval locomotion has diverged in the evolutionary history of the genus Drosophila and evolved under the effects of the minimum ambient temperature of habitats.


2017 ◽  
Vol 4 (8) ◽  
pp. 161029 ◽  
Author(s):  
Yoko Matsumura ◽  
Takuya Kubo

Some species of criocerine beetles have a hyper-elongated part of the intromittent organ called a flagellum. In resting position, the flagellum is stored in a specialized internal sac in the intromittent organ. This specialized state of the flagellum and internal sac is indispensable during copulation for flagellar insertion into the female spermathecal duct for sperm transfer. However, the morphogenesis of the flagellum does not generate the active state of the flagellum; rather, the flagellum is generated in an inactive and completely coiled state. After eclosion, males of Lema coronata evert and withdraw the internal sac multiple times before sexual maturation, without mounting a female. This behaviour serves to uncoil the flagellum and guide it into the active state with the aid of surface structures on the internal sac. A closely related species, Lema dilecta , also has a long flagellum and undergoes the same behaviour to place the flagellum in the active position. However, some other species of criocerine beetles with much shorter flagella can attain the active state without exhibiting this behaviour. Based on a previously proposed phylogenetic tree, we discuss the evolutionary history of the hyper-elongation of the flagellum and associated behaviour.


Sign in / Sign up

Export Citation Format

Share Document