scholarly journals Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples

2020 ◽  
Vol 8 (4) ◽  
pp. 578 ◽  
Author(s):  
Valentina Spanic ◽  
Zorana Katanic ◽  
Michael Sulyok ◽  
Rudolf Krska ◽  
Katalin Puskas ◽  
...  

In this study, the occurrence of multiple fungal metabolites including mycotoxins was determined in four different winter wheat varieties in a field experiment in Croatia. One group was naturally infected, while the second group was inoculated with a Fusarium graminearum and F. culmorum mixture to simulate a worst-case infection scenario. Data on the multiple fungal metabolites including mycotoxins were acquired with liquid chromatography with mass spectrometry (LC-MS/MS) multi-(myco)toxin method. In total, 36 different fungal metabolites were quantified in this study: the Fusarium mycotoxins deoxynivalenol (DON), DON-3-glucoside (D3G), 3-acetyldeoxynivalenol (3-ADON), culmorin (CULM), 15-hydroxyculmorin, 5-hydroxyculmorin, aurofusarin, rubrofusarin, enniatin (Enn) A, Enn A1, Enn B, Enn B1, Enn B2, Enn B3, fumonisin B1, fumonisin B2, chrysogin, zearalenone (ZEN), moniliformin (MON), nivalenol (NIV), siccanol, equisetin, beauvericin (BEA), and antibiotic Y; the Alternaria mycotoxins alternariol, alternariolmethylether, altersetin, infectopyron, tentoxin, tenuazonic acid; the Aspergillus mycotoxin kojic acid; unspecific metabolites butenolid, brevianamid F, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), and tryptophol. The most abundant mycotoxins in the inoculated and naturally contaminated samples, respectively, were found to occur at the following average concentrations: DON (19,122/1504 µg/kg), CULM (6109/1010 µg/kg), 15-hydroxyculmorin (56,022/1301 µg/kg), 5-hydroxyculmorin (21,219/863 µg/kg), aurofusarin (43,496/1266 µg/kg). Compared to naturally-infected samples, Fusarium inoculations at the flowering stage increased the concentrations of all Fusarium mycotoxins, except enniatins and siccanol in Ficko, the Aspergillus metabolite kojic acid, the Alternaria mycotoxin altersetin, and unspecific metabolites brevianamid F, butenolid, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val). In contrast to these findings, because of possible antagonistic actions, Fusarium inoculation decreased the concentrations of the Alternaria toxins alternariol, alternariolmethylether, infectopyron, tentoxin, tenuazonic acid, as well as the concentration of the nonspecific metabolite tryptophol.

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 232
Author(s):  
Antonio Gallo ◽  
Francesca Ghilardelli ◽  
Alberto Stanislao Atzori ◽  
Severino Zara ◽  
Barbara Novak ◽  
...  

Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.


1996 ◽  
Vol 79 (6) ◽  
pp. 1365-1380 ◽  
Author(s):  
Eric W Sydenham ◽  
Pieter G Thiel ◽  
Robert Vleggaar

Abstract Fusarium toxins are a major group of secondary metabolites, produced by several species, that may contaminate food cereals and animal feeds. We describe results of a study in which a number of physicochemical constants for 12 important Fusarium mycotoxins (zearalenone, diacetoxyscirpenol, T-2 toxin, neosolaniol monoacetate, deoxynivalenol, nivalenol, fumonisin B1, fumonisin B2, moniliformin, fusarenon-X, HT-2 toxin, and β-zearalenol) were determined. Nuclear magnetic resonance, mass spectrometric, UV spectral, molar absorption coefficients, fluorescence spectra, melting points, and specific rotation data are presented.


2020 ◽  
Vol 36 (4) ◽  
pp. 381-387
Author(s):  
Michael Sulyok ◽  
Rudolf Krska ◽  
Hamide Senyuva

Abstract Fungal metabolites including regulated mycotoxins were identified by a validated LC-MS/MS method in 180 individual Turkish dried figs from 2017 and 2018 harvests. Hand-selected dried figs were subjectively classified based on the extent of fluorescence. Forty-three fungal metabolites including eight EU-regulated mycotoxins were identified and quantified. Figs classified as being uncontaminated mostly did not contain aflatoxins above 1 μg/kg. Despite being “uncontaminated” from an aflatoxin perspective, kojic acid was present in significant quantities with a maximum level of 3750 mg/kg (0.375% w/w) and tenuazonic acid was also found (2 μg/kg to 298 mg/kg) in some figs. Notable in the screening of figs has been the presence of significant amounts of aflatoxin M1 (AFM1) in figs also containing significant levels of aflatoxin B1 (AFB1), which is the first time that AFM1 has been reported as naturally occurring in dried figs.


Author(s):  
Siegfried Knasmüller ◽  
Nikolaus Bresgen ◽  
Fekadu Kassie ◽  
Volker Mersch-Sundermann ◽  
Wentzel Gelderblom ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 241 ◽  
Author(s):  
Giovanni Beccari ◽  
Łukasz Stępień ◽  
Andrea Onofri ◽  
Veronica M. T. Lattanzio ◽  
Biancamaria Ciasca ◽  
...  

Investigating the in vitro fumonisin biosynthesis and the genetic structure of Fusarium verticillioides populations can provide important insights into the relationships between strains originating from various world regions. In this study, 90 F. verticillioides strains isolated from maize in five Mediterranean countries (Italy, Spain, Tunisia, Egypt and Iran) were analyzed to investigate their ability to in vitro biosynthesize fumonisin B1, fumonisin B2 and fumonisin B3 and to characterize their genetic profile. In general, 80% of the analyzed strains were able to biosynthesize fumonisins (range 0.03–69.84 μg/g). Populations from Italy, Spain, Tunisia and Iran showed a similar percentage of fumonisin producing strains (>90%); conversely, the Egyptian population showed a lower level of producing strains (46%). Significant differences in fumonisin biosynthesis were detected among strains isolated in the same country and among strains isolated from different countries. A portion of the divergent FUM1 gene and of intergenic regions FUM6-FUM7 and FUM7-FUM8 were sequenced to evaluate strain diversity among populations. A high level of genetic uniformity inside the populations analyzed was detected. Apparently, neither geographical origin nor fumonisin production ability were correlated to the genetic diversity of the strain set. However, four strains from Egypt differed from the remaining strains.


2015 ◽  
Vol 19 (1) ◽  
pp. 35-60 ◽  
Author(s):  
Oana Stanciu ◽  
Roxana Banc ◽  
Anamaria Cozma ◽  
Lorena Filip ◽  
Doina Miere ◽  
...  

AbstractThe quality of cereals is very important for both human and animal nutrition. Fusarium mycotoxins include a great number of compounds. Trichothecenes, zearalenone (ZEN) and fumonisins are the major Fusarium mycotoxins occurring in cereal grains, animal feeds and forages. Conditions that predispose to mycotoxin production by Fusarium species include humidity, temperature, aeration and substrate type. Even if a great number of fungal metabolites have been designated as mycotoxins, a small number are known to have significant animal/human health and economic significance. For this, the world-wide impact of mycotoxins on human and animal health is likely underestimated and the future in this area is to identify additional specific biomarkers and group of biomarkers that can be used to establish the exposition of human and animals to individual mycotoxins.


2008 ◽  
Vol 1 (2) ◽  
pp. 175-188 ◽  
Author(s):  
V. Ostry

Microfungi of the genus Alternaria are ubiquitous pathogens and saprophytes. Many species of the genus Alternaria commonly cause spoilage of various food crops in the field or post-harvest decay. Due to their growth even at low temperatures, they are also responsible for spoilage of these commodities during refrigerated transport and storage. Several Alternaria species are known producers of toxic secondary metabolites - Alternaria mycotoxins. A. alternata produces a number of mycotoxins, including alternariol, alternariol monomethyl ether, altenuene, altertoxins I, II, III, tenuazonic acid and other less toxic metabolites. Tenuazonic acid is toxic to several animal species, e.g. mice, chicken, dogs. Alternariol, alternariol monomethyl ether, altenuene and altertoxin I are not very acutely toxic. There are several reports on the mutagenicity and genotoxicity of alternariol, and alternariol monomethyl ether. Alternariol has been identified as a topoisomerase I and II poison which might contribute to the impairment of DNA integrity in human colon carcinoma cells. Analytical methods to determine Alternaria toxins are largely based on procedures, involving cleanup by solvent partitioning or solid phase extraction, followed by chromatographic separation techniques, in combination with ultraviolet, fluorescence, electrochemical and mass spectroscopic detection. A large number of Alternaria metabolites has been reported to occur naturally in food commodities (e.g. fruit, vegetables, cereals and oil plants). Alternariol, alternariol monomethyl ether and tenuazonic acid were frequently detected in apples, apple products, mandarins, olives, pepper, red pepper, tomatoes, tomato products, oilseed rape meal, sunflower seeds, sorghum, wheat and edible oils. Alternariol and alternariol monomethyl ether were detected in citrus fruit, Japanese pears, prune nectar, raspberries, red currant, carrots, barley and oats. Alternariol monomethyl ether and tenuazonic acid were detected in melon. Natural occurrence of alternariol has been reported in apple juice, cranberry juice, grape juice, prune nectar, raspberry juice, red wine and lentils.


Sign in / Sign up

Export Citation Format

Share Document