scholarly journals Lactic Acid Bacteria Adjunct Cultures Exert a Mitigation Effect against Spoilage Microbiota in Fresh Cheese

2020 ◽  
Vol 8 (8) ◽  
pp. 1199
Author(s):  
Daniela Bassi ◽  
Simona Gazzola ◽  
Eleonora Sattin ◽  
Fabio Dal Bello ◽  
Barbara Simionati ◽  
...  

Lactic acid bacteria (LAB) have a strong mitigation potential as adjunct cultures to inhibit undesirable bacteria in fermented foods. In fresh cheese with low salt concentration, spoilage and pathogenic bacteria can affect the shelf life with smear on the surface and packaging blowing. In this work, we studied the spoilage microbiota of an Italian fresh cheese to find tailor-made protective cultures for its shelf life improvement. On 14-tested LAB, three of them, namely Lacticaseibacillus rhamnosus LRH05, Latilactobacillus sakei LSK04, and Carnobacterium maltaromaticum CNB06 were the most effective in inhibiting Gram-negative bacteria. These cultures were assessed by the cultivation-dependent and DNA metabarcoding approach using in vitro experiments and industrial trials. Soft cheese with and without adjunct cultures were prepared and stored at 8 and 14 °C until the end of the shelf life in modified atmosphere packaging. Data demonstrated that the use of adjunct cultures reduce and/or modulate the growth of spoilage microbiota at both temperatures. Particularly, during industrial experiments, C. maltaromaticum CNB06 and Lcb. rhamnosus RH05 lowered psychrotrophic bacteria of almost 3 Log CFU/g in a 5-week stored cheese. On the contrary, Llb. sakei LSK04 was able to colonize the cheese but it was not a good candidate for its inhibition capacity. The combined approach applied in this work allowed to evaluate the protective potential of LAB strains against Gram-negative communities.

2008 ◽  
Vol 71 (6) ◽  
pp. 1237-1243 ◽  
Author(s):  
M. TURGIS ◽  
J. HAN ◽  
J. BORSA ◽  
M. LACROIX

Selected Chinese cinnamon, Spanish oregano, and mustard essential oils (EOs) were used in combination with irradiation to evaluate their ability to eliminate pathogenic bacteria and extend the shelf life of medium-fat-content ground beef (23% fat). Shelf life was defined as the time when the total bacterial count reached 107 CFU/g. The shelf life of ground beef was determined for 28 days at 4°C after treatment with EOs. The concentrations of EOs were predetermined such that sensory properties of cooked meat were maintained: 0.025% Spanish oregano, 0.025% Chinese cinnamon, and 0.075% mustard. Ground beef samples containing EOs were then packaged under air or a modified atmosphere and irradiated at 1.5 kGy. Ground beef samples (10 g) were taken during the storage period for enumeration of total mesophilic aerobic bacteria, Escherichia coli, Salmonella, total coliforms, lactic acid bacteria, and Pseudomonas. Mustard EO was the most efficient for reducing the total mesophilic aerobic bacteria and eliminating pathogenic bacteria. Irradiation alone completely inhibited the growth of total mesophilic aerobic and pathogenic bacteria. The combination of irradiation and EOs was better for reducing lactic acid bacteria (mustard and cinnamon EOs) and Pseudomonas (oregano and mustard EOs). The best combined treatment for extending the shelf life of ground beef for up to 28 days was EO plus irradiation (1.5 kGy) and modified atmosphere packaging.


2021 ◽  
Author(s):  
Jaruwan Sitdhipol ◽  
Kanidta Niwasabutra ◽  
Neungnut Chaiyawan ◽  
Siritorn Teerawet ◽  
Punnathorn Thaveethaptaikul ◽  
...  

Abstract Fourteen lactic acid bacteria from fermented foods and feces of healthy animals in Thailand were characterized for their potential as probiotics. All isolates could survive in simulated gastrointestinal fluid (pH 2) and bile salt solution (pH 8) more than 70% and 63%, when compare with initial cell concentration, respectively. Adhesion test showed more than 70% adhesive property an in vitro experiment. The susceptibility assay showed that all isolates were susceptible to amoxicillin, ampicillin, erythromycin, chloramphenicol, clindamycin, imipenem, kanamycin, norfloxacin, penicillin, tetracycline and vancomycin. Based on phenotypic and genetic characteristics, they belonged to the genera Lactiplantibacillus, Levilactobacillus, Capanilactobacillus, Pediococcus, Enterococcus, Limosilactobacillus and Lacticaseibacillus. The isolates exhibited antimicrobial ability against pathogenic bacteria; Gram positive strains (Staphylococcus aureus TISTR 1466 and Listeria monocytogenes TISTR 2196) and Gram negative (Escherichia coli TISTR 780, Salmonella enteritidis TISTR 2202 and Salmonella typhimurium TISTR 292). Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1 showed bile salt hydrolase activity. Cell-free culture supernatants of all 14 isolates were screened for immunomodulating effects on Tumor Necrosis Factor Alpha (TNF-α) production. Twelve isolates were able to decrease TNF-α production at different levels, especially Lactiplantibacillus paraplantarum R26-3 and Lacticaseibacillus zeae M2/5 could high inhibit TNF-α production, showing 34 and 29% reduction, respectively. These results suggested that all 14 strains met the general criteria of probiotics and four strains, including Lacticaseibacillus zeae M2/5, Lactiplantibacillus paraplantarum R26-3, Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1, represent interesting candidates for further studies as anti-inflammatory (M2/5, R26-3) or cholesterol reducing agents (MF67.1, R7-1) in vivo animal models.


2012 ◽  
Vol 1 (1) ◽  
pp. 110 ◽  
Author(s):  
Belal J Muhialdin ◽  
Zaiton Hassan ◽  
Mohamed Muftah Ahmed Imdakim ◽  
Fredy Kesnawan Shah Abdul Kahar ◽  
Mohamed Mustafa Aween

<p>Contamination of foodstuff with foodborne and pathogenic bacteria are global issue and it is serious hazard for the health of the human. Lactic acid bacteria are well known for their health properties and their antimicrobial activity against spoilage and pathogenic bacteria. In this study, three isolates <em>Lactobacillus fermentum </em>Te007,<em> Pediococcus pentosaceus </em>Te010, <em>L. pentosus </em>G004 isolated from Malaysian fermented foods and fruits such as (tempeh, tempoyak, guava and banana) were evaluated for their antibacterial activity and antibiotic resistant against Gram-positive and Gram-negative bacteria by dual agar overlay method. The three isolates inhibited the growth of indicator bacteria and the activity was varied between weak and strong. All the isolates were resistant to the antibiotic nalidixic acid and vancomycin. The tested bacteria can be added to food as antibacterial agents to prevent the growth of harmful microorganisms.</p>


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2016 ◽  
Vol 6 (1) ◽  
pp. 15-22
Author(s):  
Zergoug Amina ◽  
Cheriguene Abderrahim ◽  
Chougrani Fadela

Urinary tract infections (UTI) are a serious bacterial pathological challenges all over the world, leading to respiratory infections, that’s why new strategies don’t cease to develop. Lactic acid bacteria having shown beneficial effects for years in various areas, may prove to be excellent candidates in medical field. The current research focused on the selection of lactic acid bacteria having the potential of an antibacterial activity against Gram negative bacteria responsible for UTI, for an eventual use as a therapeutic agent. A total of 40 isolates were isolated from goat’s raw milk of Mostaganem (West Algeria). In vitro tests were conducted in order to determine the efficiency of the isolates to produce antibacterial agents in interaction with uropathogens. Among 40 isolates, only 10 isolates identified as Lactobacilli and Lactococci were performant. The Screening showed that the inhibitor agent was proteinaceous substance. Therfore, it is noted that a treatment with presence of LAB is very encouraging as a result of the production of bacteriocin-like substance. On the other hand, LAB can be considered as a good alter-native to the large extent to the antibiotics in the treatment of UTI.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Sivasamy Gomathi ◽  
Ponnusamy Sasikumar ◽  
Kolandaswamy Anbazhagan ◽  
Sundaresan Sasikumar ◽  
Murugan Kavitha ◽  
...  

Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic propertyin vitroandin vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified asLactobacillus fermentumandLactobacillus salivariususing 16S rDNA sequencing. Three strains,Lactobacillus fermentumTY5,Lactobacillus fermentumAB1, andLactobacillus salivariusAB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.


2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


Sign in / Sign up

Export Citation Format

Share Document