scholarly journals Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages

2020 ◽  
Vol 8 (8) ◽  
pp. 1240
Author(s):  
Sangjukta Roy ◽  
Meiji Soe Aung ◽  
Shyamal Kumar Paul ◽  
Salma Ahmed ◽  
Nazia Haque ◽  
...  

Enterococcus faecalis is one of the major causes of urinary tract infection, showing acquired resistance to various classes of antimicrobials. The objective of this study was to determine the prevalence of drug resistance and its genetic determinants for E. faecalis clinical isolates in north-central Bangladesh. Among a total of 210 E. faecalis isolates, isolated from urine, the resistance rates to erythromycin, levofloxacin, and gentamicin (high level) were 85.2, 45.7, and 11.4%, respectively, while no isolates were resistant to ampicillin, vancomycin and teicoplanin. The most prevalent resistance gene was erm(B) (97%), and any of the four genes encoding aminoglycoside modifying enzyme (AME) were detected in 99 isolates (47%). The AME gene aac(6′)-Ie-aph(2”)-Ia was detected in 46 isolates (21.9%) and was diverse in terms of IS256-flanking patterns, which were associated with resistance level to gentamicin. Tetracycline resistance was ascribable to tet(M) (61%) and tet(L) (38%), and mutations in the quinolone resistance-determining region of both GyrA and ParC were identified in 44% of isolates. Five isolates (2.4%) exhibited non-susceptibility to linezolide (MIC, 4 μg/mL), and harbored the oxazolidinone resistance gene optrA, which was located in a novel genetic cluster containing the phenicol exporter gene fexA. The optrA-positive isolates belonged to ST59, ST902, and ST917 (CC59), while common lineages of other multiple drug-resistant isolates were ST6, ST28, CC16, and CC116. The present study first revealed the prevalence of drug resistance determinants of E. faecalis and their genetic profiles in Bangladesh.

1997 ◽  
Vol 41 (3) ◽  
pp. 702-705 ◽  
Author(s):  
M Shiojima ◽  
H Tomita ◽  
K Tanimoto ◽  
S Fujimoto ◽  
Y Ike

Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the pheromone response were conserved in the drug resistance plasmids.


2006 ◽  
Vol 72 (10) ◽  
pp. 6544-6553 ◽  
Author(s):  
Suk-Kyung Lim ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Yasuyoshi Ike

ABSTRACT The drug resistances and plasmid contents of a total of 85 vancomycin-resistant enterococcus (VRE) strains that had been isolated in Korea were examined. Fifty-four of the strains originated from samples of chicken feces, and 31 were isolated from hospital patients in Korea. Enterococcus faecalis KV1 and KV2, which had been isolated from a patient and a sample of chicken feces, respectively, were found to carry the plasmids pSL1 and pSL2, respectively. The plasmids transferred resistances to vancomycin, gentamicin, kanamycin, streptomycin, and erythromycin to E. faecalis strains at a high frequency of about 10−3 per donor cell during 4 hours of broth mating. E. faecalis strains containing each of the pSL plasmids formed clumps after 2 hours of incubation in broth containing E. faecalis FA2-2 culture filtrate (i.e., the E. faecalis sex pheromone), and the plasmid subsequently transferred to the recipient strain in a 10-min short mating in broth, indicating that the plasmids are responsive to E. faecalis pheromones. The pSL plasmids did not respond to any of synthetic pheromones for the previously characterized plasmids. The pheromone specific for pSL plasmids has been designated cSL1. Southern hybridization analysis showed that specific FspI fragments from each of the pSL plasmids hybridized with the aggregation substance gene (asa1) of the pheromone-responsive plasmid pAD1, indicating that the plasmids had a gene homologous to asa1. The restriction maps of the plasmids were identical, and the size of the plasmids was estimated to be 128.1 kb. The plasmids carried five drug resistance determinants for vanA, ermB, aph(3′), aph(6′), and aac(6′)/aph(2′), which encode resistance to vancomycin, erythromycin, kanamycin, streptomycin, and gentamicin/kanamycin, respectively. Nucleotide sequence analyses of the drug resistance determinants and their flanking regions are described in this report. The results described provide evidence for the exchange of genetic information between human and animal (chicken) VRE reservoirs and suggest the potential for horizontal transmission of multiple drug resistance, including vancomycin resistance, between farm animals and humans via a pheromone-responsive conjugative plasmid.


2020 ◽  
Vol 9 (5-6) ◽  
pp. 750-762
Author(s):  
E. I. Dementieva ◽  
B. L. Shaskolskiy ◽  
A. T. Leinsoo ◽  
D. A. Gryadunov ◽  
N. P. Petrova ◽  
...  

A total of 399 Neisseria gonorrhoeae clinical isolates collected in different regions of the Russian Federation in 20152017 were analyzed for tetracycline susceptibility and genetic markers of resistance. Drug susceptibility testing was performed by serial dilution method in agar and minimum inhibitory concentration (MIC) was measured according to the Russian “Guidelines for microbial susceptibility testing for antibacterial agents No. 4.2.1890-04”. Tetracycline resistance determinants were studied by using hydrogel microarray with immobilized oligonucleotide probes able to identify a series of chromosomal mutations and detect plasmid tetM gene. Different resistance determinants were found in 193 isolates (48.4%). Mutation in codon 57 in the rpsJ gene (41.2%) was most common that decreases tetracycline affinity to ribosome 30S subunit, mainly due to Val57Met substitution both as a point mutation as well as in combination with others. Mutations in the rpsJ gene were found in strains with the intermediate tetracycline susceptibility. Mutations in the porB gene (lower tetracycline influx) held the se cond place in prevalence pattern (23.1%); the Gly120Lys substitution usually led to emergence of tetracycline resistance either as a point mutation or in combination with other substitutions. Substitutions of Gly120 for other residues (Asp, Asn, and Thr) and Ala121 for Asp, Asn, and Gly had much less effect on resistance level. The –35 delA deletion in the promoter region of mtrR gene (increased expression of MtrC-MtrD-MtrE efflux pump) was observed in 11.3% strains. The tetM gene was found in 27 strains including 17 American and 10 Dutch type tetM determinants. Evolutionary tree was constructed for the tetM genes with the estimation of their homology with similar genes in genera Streptococcus, Enterococcus and Mycoplasma. Mutations in chromosomal genes resulted in increase of tetracycline MIC up to 2–4 mg/L; 4 mg/L MIC was observed in case of simultaneous presence of several mutations. Strains bearing tetM gene-containing plasmid showed extremely high resistance level: MIC ≥ 8 mg/L (64 mg/L for the two samples). Thus, long-lasting withdrawal of tetracycline use for treatment of gonococcal infections in Russia (since 2003) resulted in decreased percentage of resistant strains (including strains with intermediate susceptibility) from 75% down to 45.4%. However, currently tetracycline resistance in Russia remains elevated that is explained by the presence of different resistance determinants in the half of isolates under study.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Sae Aoki ◽  
Keisuke Nakase ◽  
Hidemasa Nakaminami ◽  
Takeaki Wajima ◽  
Nobukazu Hayashi ◽  
...  

ABSTRACT Antimicrobial-resistant Cutibacterium acnes strains have emerged and disseminated throughout the world. The 23S rRNA mutation and erm(X) gene are known as the major resistance determinants of macrolides and clindamycin in C. acnes. We isolated eight high-level macrolide-clindamycin-resistant C. acnes strains with no known resistance determinants, such as 23S rRNA mutation and erm(X), from different acne patients in 2008 between 2013 and 2015. The aim of this study was to identify the novel mechanisms of resistance in C. acnes. Whole-genome sequencing revealed the existence of a plasmid DNA, denoted pTZC1 (length, 31,440 bp), carrying the novel macrolide-clindamycin resistance gene erm(50) and tetracycline resistance gene tet(W). pTZC1 was detected in all C. acnes isolates (eight strains) exhibiting high-level macrolide-clindamycin resistance, with no known resistance determinants (MIC of clarithromycin, ≥256 μg/ml; clindamycin, ≥256 μg/ml). Transconjugation experiments demonstrated that the pTZC1 was horizontally transferred among C. acnes strains and conferred resistance to macrolides, clindamycin, and tetracyclines. Our data showed, for the first time, the existence of a transferable multidrug-resistant plasmid in C. acnes. Increased prevalence of this plasmid will be a great threat to antimicrobial therapy for acne vulgaris.


1984 ◽  
Vol 93 (2) ◽  
pp. 181-188 ◽  
Author(s):  
D. J. Platt ◽  
J. S. Sommerville ◽  
C. A. Kraft ◽  
M. C. Timbury

SummaryFour hundred and seven clinical isolates ofEscherichia coliwere examined for the presence of plasmids. These isolates comprised 189 which were collected irrespective of antimicrobial resistance (VP) and 218 which were collected on the basis of high-level trimethoprim resistance (TPR). The VP isolates were divided into drug sensitive (VPS) and drug-resistant (VPR) subpopulations.Plasmids were detected in 88% of VP isolates (81% of VPS and 94% of VPR) and 98% of TPR isolates. The distribution of plasmids in both groups and subpopulations was very similar. However, there were small but statistically significant differences between the plasmid distributions. These showed that more isolates in the resistant groups harboured plasmids than in the sensitive subpopulation (VPS) and that the number of plasmids carried by resistant isolates was greater. Multiple drug resistance was significantly more common among TPR isolates than the VPR subpopulation and this was paralleled by increased numbers of plasmids.Fifty-eight per cent of VPR and 57% of TPR isolates transferred antimicrobial resistance and plasmids toE. coliK12. Of the R+isolates, 60% carried small plasmids (MW < 20Md) and 52% of these co-transferred with R-plasmids. These results are discussed.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 65
Author(s):  
Armin Tarrah ◽  
Shadi Pakroo ◽  
Viviana Corich ◽  
Alessio Giacomini

The existence of antibiotic-resistant bacteria in food products, particularly those carrying acquired resistance genes, has increased concerns about the transmission of these genes from beneficial microbes to human pathogens. In this study, we evaluated the antibiotic resistance-susceptibility patterns of 16 antibiotics in eight S. thermophilus strains, whose genome sequence is available, using phenotypic and genomic approaches. The minimal inhibitory concentration values collected revealed intermediate resistance to aminoglycosides, whereas susceptibility was detected for different classes of β-lactams, quinolones, glycopeptide, macrolides, and sulfonamides in all strains. A high tetracycline resistance level has been detected in strain M17PTZA496, whose genome analysis indicated the presence of the tet(S) gene and the multidrug and toxic compound extrusion (MATE) family efflux pump. Moreover, an in-depth genomic analysis revealed genomic islands and an integrative and mobilizable element (IME) in the proximity of the gene tet(S). However, despite the presence of a prophage, genomic islands, and IME, no horizontal gene transfer was detected to Lactobacillus delbrueckii subsp. lactis DSM 20355 and Lactobacillusrhamnosus GG during 24 h of skim milk fermentation, 2 weeks of refrigerated storage, and 4 h of simulated gastrointestinal transit.


2003 ◽  
Vol 47 (12) ◽  
pp. 3950-3953 ◽  
Author(s):  
George L. Daikos ◽  
George Bamias ◽  
Christos Kattamis ◽  
Marcus J. Zervos ◽  
Joseph W. Chow ◽  
...  

ABSTRACT The elements conferring high-level gentamicin resistance in 64 clinical isolates of Enterococcus faecalis were characterized by PCR and by restriction enzyme hybridization analysis of genomic and plasmid DNA. There was a strong association between gentamicin resistance and the aac(6′)-aph(2") gene carried on IS256-based elements with different structures, locations, and transfer characteristics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nurul Asyiqin Haulisah ◽  
Latiffah Hassan ◽  
Siti Khairani Bejo ◽  
Saleh Mohammed Jajere ◽  
Nur Indah Ahmad

Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77–93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68–82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95–100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80–100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.


Sign in / Sign up

Export Citation Format

Share Document