scholarly journals The Ubiquitination System within Bacterial Host–Pathogen Interactions

2021 ◽  
Vol 9 (3) ◽  
pp. 638
Author(s):  
Vera Vozandychova ◽  
Pavla Stojkova ◽  
Kamil Hercik ◽  
Pavel Rehulka ◽  
Jiri Stulik

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host–pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.

Author(s):  
Donghyuk Shin ◽  
Anshu Bhattacharya ◽  
Yi-Lin Cheng ◽  
Marta Campos Alonso ◽  
Ahmad Reza Mehdipour ◽  
...  

AbstractLegionella pneumophila is a gram-negative pathogenic bacterium that causes Legionaries’ disease. The Legionella genome codes more than 300 effector proteins able to modulate host-pathogen interactions during infection. Among them are also enzymes altering the host-ubiquitination system including bacterial ligases and deubiquitinases. In this study, based on homology-detection screening on 305 Legionella effector proteins, we identified two LegionellaOTU-like deubiquitinases (LOT; LotB (Lpg1621/Ceg23) and LotC (Lpg2529), LotA (Lpg2248/Lem21) is already known). A crystal structure of LotC catalytic core (LotC14-310) was determined at 2.4 Å and compared with other OTU deubiquitinases, including LotB. Unlike the classical OTU-family, the structures of Legionella OTU-family (LotB and LotC) shows an extended helical lobe between the Cys-loop and the variable loop, which define a novel class of OTU-deubiquitinase. Despite structural differences in their helical lobes, both LotB and LotC interact with ubiquitin. LotB has an additional ubiquitin binding site (S1’) enabling specific cleavage of Lys63-linked poly-ubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of catalytically inactive LotB and LotC identified different categories of host-substrates for these two related DUBs. Together, our results provide new structural insights of bacterial OTU deubiquitinases and indicate distinct roles of bacterial deubiquitinases in host-pathogen interactions.


2020 ◽  
Vol 3 (9) ◽  
pp. e202000838
Author(s):  
Thomas Hermanns ◽  
Ilka Woiwode ◽  
Ricardo FM Guerreiro ◽  
Robert Vogt ◽  
Michael Lammers ◽  
...  

Deubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about 100 different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific hidden Markov models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with side chains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.


2020 ◽  
Author(s):  
Laura F. Fielden ◽  
Nichollas E. Scott ◽  
Catherine S. Palmer ◽  
Chen Ai Khoo ◽  
Hayley J Newton ◽  
...  

AbstractModulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver a cohort of bacterial proteins, termed ‘effector proteins’ into the host cell during infection by sophisticated protein translocation systems which manipulate cellular processes and functions. Despite the importance of these proteins during infection the functional contribution of individual effectors is poorly characterised, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here we present development of a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify 4 novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localisation of ectopically expressed proteins in epithelial cells confirmed the mitochondrial localisation, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein is imported into mitochondria and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to the study of intracellular host-pathogen interactions occurring during infection, providing a robust strategy to examine the sub-cellular localisation of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.


2020 ◽  
Author(s):  
Thomas Hermanns ◽  
Ilka Woiwode ◽  
Ricardo F. M. Guerreiro ◽  
Robert Vogt ◽  
Michael Lammers ◽  
...  

AbstractDeubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about hundred different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific Hidden-Markov-Models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with sidechains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.


2020 ◽  
pp. mcp.RA120.002370
Author(s):  
Laura F Fielden ◽  
Nichollas E. Scott ◽  
Catherine S Palmer ◽  
Chen Ai Khoo ◽  
Hayley J. Newton ◽  
...  

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed ‘effector proteins’ into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterised, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify 4 novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localisation of ectopically expressed proteins confirmed their mitochondrial localisation, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localises to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the sub-cellular localisation of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.


Author(s):  
Jere W. McBride ◽  
David H. Walker

Ehrlichiaare small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host–pathogen interactions have yielded recent advances in understanding the molecular interactions betweenEhrlichiaand the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology ofEhrlichiainfection. We identify new molecular host–pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.


2008 ◽  
Vol 21 (1) ◽  
pp. 134-156 ◽  
Author(s):  
Gunnar N. Schroeder ◽  
Hubert Hilbi

SUMMARY Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jonas Kjellin ◽  
Maria Pränting ◽  
Frauke Bach ◽  
Roshan Vaid ◽  
Bart Edelbroek ◽  
...  

Abstract Background During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. Results The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. Conclusions Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.


Sign in / Sign up

Export Citation Format

Share Document