scholarly journals Immunobiotic Feed Developed with Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and the Soymilk By-Product Okara Improves Health and Growth Performance in Pigs

2021 ◽  
Vol 9 (5) ◽  
pp. 921
Author(s):  
Yoshihito Suda ◽  
Nana Sasaki ◽  
Kyoma Kagawa ◽  
Mariano Elean ◽  
Binghui Zhou ◽  
...  

Lactobacillus delbrueckii subsp. delbrueckii TUA4408L is able to differentially modulate the innate immune response of porcine intestinal epithelial cells triggered by TLR4 activation. This strain also has a remarkable ability to grow on plant substrates. These two immunological and biotechnological characteristics prompted us to evaluate whether the soymilk by-product okara fermented with the TUA4408L strain can serve as an immunobiotic feed with the ability to beneficially modulate the intestinal immunity of piglets after weaning to improve their productivity. Our in vivo studies demonstrated that the administration of immunobiotic TUA4408L-fermented okara feed significantly increased piglet growth performance and meat quality. These positive effects were associated with the ability of the TUA4408L-fermented okara feed to beneficially modulate both intestinal microbiota and immunity in pigs. The immunobiotic feed improved the abundance of the beneficial bacteria Lactobacillus and Lactococcus in the gut of pigs, reduced blood markers of inflammation, and differentially regulated the expression of inflammatory and regulatory cytokines in the intestinal mucosa. These findings indicate that the immunobiotic TUA4408L-fermented okara feed could be an economical and environmentally friendly option to improve the growth performance and immune health of pigs.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Planta Medica ◽  
2018 ◽  
Vol 84 (03) ◽  
pp. 139-152 ◽  
Author(s):  
Dao Tam ◽  
Duy Truong ◽  
Thi Nguyen ◽  
Le Quynh ◽  
Linh Tran ◽  
...  

AbstractGinsenoside Rh1 is one of major bioactive compounds extracted from red ginseng, which has been increasingly used for enhancing cognition and physical health worldwide. The objective of this study was to review the pharmacological effects of ginsenoside Rh1 in a systematic manner. We performed searches on eight electronic databases including MEDLINE (Pubmed), Scopus, Google Scholar, POPLINE, Global Health Library, Virtual Health Library, the System for Information on Grey Literature in Europe, and the New York Academy of Medicine Grey Literature Report to select the original research publications reporting the biological and pharmacological effects of ginsenoside Rh1 from in vitro and in vivo studies regardless of publication language and study design. Upon applying the inclusion and exclusion criteria, we included a total of 57 studies for our systemic review. Ginsenoside Rh1 exhibited the potent characteristics of anti-inflammatory, antioxidant, immunomodulatory effects, and positive effects on the nervous system. The cytotoxic effects of ginsenoside Rh1 were dependent on different types of cell lines. Other pharmacological effects including estrogenic, enzymatic, anti-microorganism activities, and cardiovascular effects have been mentioned, but the results were considerably diverged. A higher quality of evidence on clinical trial studies is highly recommended to confirm the consistent efficacy of ginsenoside Rh1.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5343
Author(s):  
Michał Otręba ◽  
Leon Kośmider ◽  
Jerzy Stojko ◽  
Anna Rzepecka-Stojko

Polyphenols have recently gained popularity among the general public as products and diets classified as healthy and containing naturally occurring phenols. Many polyphenolic extracts are available on the market as dietary supplements, functional foods, or cosmetics, taking advantage of clients’ desire to live a healthier and longer life. However, due to the difficulty of discovering the in vivo functions of polyphenols, most of the research focuses on in vitro studies. In this review, we focused on the cardioprotective activity of different polyphenols as possible candidates for use in cardiovascular disease therapy and for improving the quality of life of patients. Thus, the studies, which were mainly based on endothelial cells, aortic cells, and some in vivo studies, were analyzed. Based on the reviewed articles, polyphenols have a few points of action, including inhibition of acetylcholinesterase, decrease in reactive oxygen species production and endothelial tube formation, stimulation of acetylcholine-induced endothelium-derived mediator release, and others, which lead to their cardio- and/or vasoprotective effects on endothelial cells. The obtained results suggest positive effects of polyphenols, but more long-term in vivo studies demonstrating effects on mechanism of action, sensitivity, and specificity or efficacy are needed before legal health claims can be made.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Ye Li ◽  
Xu Duan ◽  
Yinxue Chen ◽  
Bingyun Liu ◽  
Gang Chen

AbstractDental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.


2007 ◽  
Vol 13 (6) ◽  
pp. 469-475 ◽  
Author(s):  
N.-F. Wang ◽  
Y.-H. Shi ◽  
J. Sun ◽  
G.-W. Le

The aim of this study was to evaluate the probiotic value of peanut flour fermented with lactic acid bacteria in vitro and in vivo. Four strains including Lactobacillus delbrueckii LD09, Lactobacillus casei LC35, Lactobacillus acidophilus LA51, and Lactobacillus plantarum P9 were screened for their growth and survival in peanut flour. Among all the strains, L. plantarum P9 grew to the highest cell population (9.48 log cfu/g) in peanut flour after 72 h fermentation at 37°C. After 28 days storage at 4°C, no marked change in the viable count of this strain was observed. Peanut flour fermented with L. plantarum P9 could also increase the content of crude protein and the degree of protein hydrolysis. In an in vitro system, the addition of protein from the fermented peanut flour greatly enhanced the survival of L. plantarum P9 in simulated gastric and bile juices. In vivo studies, supplementation with the fermented peanut flour in the diet of mice increased significantly the number of lactobacilli in the fecal samples compared to the control group. At the same time, the number of enterobacteria decreased significantly. These results indicated that peanut flour fermented with L. plantarum P9 strain could be a novel type of probiotic food.


Author(s):  
Kevin Omondi Aduol ◽  
Arnold N. Onyango ◽  
Samuel M. Imathiu

Fermentation of cowpea milk was carried out using three mixed starter cultures containing (i) Lactobacillus acidophilus, Bifidobacterium spp, and Streptococcus thermophilus (ABT) (ii) Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus (DT) or (iii) Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus (GT). Proximate composition of raw and fermented cowpea milk was determined using the AOAC methods. Lactic acid bacteria survival and sensory attributes of the fermented cowpea milk was also determined. Crude fat decreased significantly (P<0.05) after fermentation except for GT culture which led to 33.2% increase. Crude fiber was not detected in all the samples. Fermentation with GT also led to increase in protein content, although this was not significant. A decrease was observed for carbohydrate content, after fermentation, with DT culture leading to the highest decrease of 7.1%. There was a general increase in microbial growth during the first two weeks of storage (refrigeration at 4˚C). Thereafter the number reduced to Log10 4.11 cfu/ml on the 28th day of storage. No significant differences were observed for sensory attributes of taste, texture and overall acceptability. However, aroma and appearance had significant differences among the samples (P<0.05). The study demonstrated that nutritional quality of cowpea milk can be achieved through fermentation. Also, cowpea milk fermented with lactic acid bacteria produce a yoghurt-like product that can be sweetened to taste and be acceptable to consumers. The study therefore recommends that more work should be done to improve the sensory acceptability of the products and that their potential health benefits should be determined through in vivo studies.


Nutrients ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 845 ◽  
Author(s):  
Bailiang Li ◽  
Da Jin ◽  
Shangfu Yu ◽  
Smith Etareri Evivie ◽  
Zafarullah Muhammad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document