scholarly journals Quantification of the Adhesion Strength of Candida albicans to Tooth Enamel

2021 ◽  
Vol 9 (11) ◽  
pp. 2213
Author(s):  
Gubesh Gunaratnam ◽  
Johanna Dudek ◽  
Philipp Jung ◽  
Sören L. Becker ◽  
Karin Jacobs ◽  
...  

Caries is one of the most prevalent diseases worldwide, which is caused by the degradation of the tooth enamel surface. In earlier research the opportunistic pathogen Candida albicans has been associated with the formation of caries in children. Colonization of teeth by C. albicans starts with the initial adhesion of individual yeast cells to the tooth enamel surface. In this study, we visualized the initial colonization of C. albicans yeast cells on pellicle-covered enamel by scanning electron microscopy. To quantitatively unravel the initial adhesion strength, we applied fluidic force microscopy-based single-cell force spectroscopy to examine the key adhesion parameters adhesion force, rupture length and de-adhesion work. We analyzed single saliva-treated or untreated yeast cells on tooth enamel specimens with or without salivary pellicle. Under all tested conditions, adhesion forces in the lower nanonewton range were determined. Furthermore, we have found that all adhesion parameters were enhanced on the pellicle-covered compared to the uncovered enamel. Our data suggest that initial adhesion occurs through a strong interaction between yeast cell wall-associated adhesins and the salivary pellicle. Future SCFS studies may show whether specific management of the salivary pellicle reduces the adhesion of C. albicans on teeth and thus contributes to caries prophylaxis.

2017 ◽  
Vol 96 (8) ◽  
pp. 917-923 ◽  
Author(s):  
S. Aguayo ◽  
H. Marshall ◽  
J. Pratten ◽  
D. Bradshaw ◽  
J.S. Brown ◽  
...  

Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.


2010 ◽  
Vol 9 (11) ◽  
pp. 1690-1701 ◽  
Author(s):  
Kevin Alby ◽  
Dana Schaefer ◽  
Racquel Kim Sherwood ◽  
Stephen K. Jones ◽  
Richard J. Bennett

ABSTRACT Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca2+ dependent, as chelation of Ca2+ ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca2+-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 406 ◽  
Author(s):  
Qian Li ◽  
Baojun Yang ◽  
Jianyu Zhu ◽  
Hao Jiang ◽  
Jiaokun Li ◽  
...  

Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively analyzed for Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans during bioleaching of chalcopyrite. The adhesion forces between bacteria and minerals were measured by atomic force microscopy (AFM). L. ferrooxidans had the largest adhesion force and attached best to chalcopyrite, while A. ferrooxidans exhibited the highest bioleaching of chalcopyrite. The results suggest that the biofilm formation, rather than the initial adhesion, is positively correlated with bioleaching efficiency.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pei Yu ◽  
Chuanyong Wang ◽  
Jinglin Zhou ◽  
Li Jiang ◽  
Jing Xue ◽  
...  

Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation ofStreptococcus mutans(S. mutans) to zirconia. Atomic force microscopy was employed to determine the zirconia surface morphology and the adhesion forces between theS. mutansand zirconia. The results showed that the surface roughness was nanoscale and significantly different among tested groups (P<0.05): Coarse (23.94±2.52 nm) > Medium (17.00±3.81 nm) > Fine (11.89±1.68 nm). The contact angles of the Coarse group were the highest, followed by the Medium and the Fine groups. Increasing the surface roughness and hydrophobicity resulted in an increase of adhesion forces and early attachment (2 h and 4 h) ofS. mutanson the zirconia but no influence on the further development of biofilm (6 h~24 h). Our findings suggest that the surface roughness in nanoscale and hydrophobicity of zirconia had influence on theS. mutansinitial adhesion force and early attachment instead of whole stages of biofilm formation.


Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 180-185 ◽  
Author(s):  
Qihang Zeng ◽  
Genlei Ma ◽  
Heng Xiao ◽  
Dan Yang ◽  
Jing Zheng ◽  
...  

2011 ◽  
Vol 77 (18) ◽  
pp. 6357-6367 ◽  
Author(s):  
S. Gregoire ◽  
J. Xiao ◽  
B. B. Silva ◽  
I. Gonzalez ◽  
P. S. Agidi ◽  
...  

ABSTRACTCandida albicansand mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted byStreptococcus mutansbind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymersin situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions betweenC. albicansSC5314 andS. mutansUA159, both with each other and with the sHA surface. GtfB adhered effectively to theC. albicansyeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P< 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers ofS. mutanscells bound toC. albicanscells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formedin situalso enhancedC. albicansinteractions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation ofS. mutanson the sHA surface (versusS. mutansincubated alone or mixed with uncoatedC. albicans;P< 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrixin situand may enhance the accumulation ofS. mutanson the tooth enamel surface, thereby modulating the development of virulent biofilms.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010192
Author(s):  
Mengli Yang ◽  
Norma V. Solis ◽  
Michaela Marshall ◽  
Rachel Garleb ◽  
Tingting Zhou ◽  
...  

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Sign in / Sign up

Export Citation Format

Share Document