scholarly journals Genetic Diversity of Staphylococcus aureus Strains from a Tertiary Care Hospital in Rawalpindi, Pakistan

2021 ◽  
Vol 9 (11) ◽  
pp. 2301
Author(s):  
Muhammad Ali Syed ◽  
Bushra Jamil ◽  
Hazem Ramadan ◽  
Maria Rukan ◽  
Shahzad Ali ◽  
...  

Staphylococcus aureus is an important healthcare-associated bacterium that causes a multitude of infections in humans such as superficial skin and soft tissue infections, necrotizing pneumonia, foodborne illnesses and postsurgical infections. Treatment of S. aureus infections has become more complicated due to the emergence of Methicillin-Resistant Staphylococcus aureus (MRSA), some of which are multidrug resistant. The present study aimed to characterize S. aureus isolates from a tertiary care hospital in the Rawalpindi district of Pakistan. Staphylococci were isolated from 300 clinical samples collected from January 2018 to January 2019 and S. aureus isolates were tested for antimicrobial susceptibility and analyzed using Pulsed-Field Gel Electrophoresis (PFGE), Multi-Locus Sequence Typing (MLST), staphylococcal cassette chromosome mec (SCCmec) and spa typing. Approximately 25.3% (76/300) of the clinical samples were positive for S. aureus; of those, 88.2% (67/76) were mecA+ (MRSA). In addition to the β-lactam antibiotics, high levels of resistance were also found to the fluoroquinolones (ciprofloxacin, gatifloxacin and levofloxacin (73.7% each)). Of the 23 different spa types identified, the majority of isolates belonged to spa type t632 and t657 (9/66; 13.6% each spa type). ST772-t657 (Bengal Bay clone) was the most commonly identified clone in this study although other clones circulating around different regions of the world were also found indicating the diversity in MRSA isolates from this area of Pakistan. This study emphasizes the need to monitor MRSA in the clinical setting for improved infection control and treatment options.

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Aryatara Shilpakar ◽  
Mehraj Ansari ◽  
Kul Raj Rai ◽  
Ganesh Rai ◽  
Shiba Kumar Rai

Abstract Background The existence of multidrug-resistant organisms, including extended-spectrum beta-lactamases (ESBLs), is on rise across the globe and is becoming a severe problem. Knowledge of the prevalence and antibiogram profile of such isolates is essential to develop an appropriate treatment methodology. This study aimed to study the prevalence of Gram-negative isolates exhibiting ESBL at a tertiary care hospital and study their antibiogram profile. Methods A cross-sectional study was conducted at Shahid Gangalal National Heart Centre, Kathmandu, Nepal, from June 2018 to November 2018. A total of 770 clinical samples were collected and identified using the conventional biochemical tests following the Clinical and Laboratory Standard Institute (CLSI) guidelines. Antimicrobial susceptibility testing (AST) was performed using the standardized Kirby-Bauer disk diffusion method. The screening test for ESBL producers was performed as recommended by the CLSI and the confirmatory test was performed phenotypically using the E-test. Results Out of the 92 isolates, 84 (91.3%) were multidrug-resistant, and 47 (51.1%) were found to be potential ESBL producers. Of these, 16 isolates were confirmed ESBL producers by the E-test. Escherichia coli and Klebsiella pneumoniae were the predominant isolates and were also the major ESBL producers. Besides polymyxin B (100% sensitive), meropenem and imipenem showed high efficacy against the ESBL producers. Conclusion Multidrug resistance was very high; however, ESBL production was low. Polymyxin B and carbapenems are the choice of drugs against ESBL producers but should be used only as the last line drugs.


Author(s):  
Harsha Sreedharan ◽  
KB Asha Pai

Introduction: Methicillin-Resistant Staphylococcus aureus(MRSA) infection is a major global healthcare problem, the prevalence of which varies from 25-50% in India. It is known to cause Skin and Soft tissue Infections (SSI), endovascular infections, endocarditis, pneumonia, septic arthritis, osteomyelitis, and sepsis. Vancomycin is the drug of choice for treating severe MRSA infections. Ceftaroline, a fifth-generation cephalosporin has been approved by the United States Food and Drug Administration (US FDA) for treating acute bacterial SSI caused by susceptible micro-organisms including MRSA, Community acquired respiratory tract infection, MRSA bacteremia and endocarditis. Aim: To assess the susceptibility of clinical isolates of S. aureusto ceftaroline, in a Tertiary Care Hospital. Materials and Methods: This prospective study was conducted in the Department of Microbiology of a Tertiary Care Hospital over a period of two months from June 2019 to July 2019. S.aureus isolates from various clinical samples were screened for methicillin resistance by disc diffusion method using cefoxitin disc and ceftaroline susceptibility of these isolates was assessed by E-strip method. The isolates were classified as ceftaroline susceptible, Susceptibility Dose Dependent (SDD) and ceftaroline resistant respectively as per CLSI guidelines. A descriptive analysis of the data was done and the results were presented as frequencies and percentages. Results: All the S.aureus isolates were found to be susceptible to ceftaroline. Methicillin Sensitive Staphylococcus aureus(MSSA) isolates had lower Minimum Inhibitory Concentration (MIC) when compared to MRSA. The highest MIC among MRSA was 0.5 μg/mL. Conclusion: Ceftaroline can be considered as an effective alternative for treatment of infections caused by MRSA.


2020 ◽  
Vol 2 (2) ◽  
pp. 9-15
Author(s):  
Niraj Kumar Keyal ◽  
Mahendra Shrestha ◽  
Partima Sigdel Ghimire

 Background: Empirical antibiotics are used in the intensive care unit based on developing countries’ guidelines due to a lack of a bacteriological profile of individual ICU and institution policy. Therefore, this study was conducted to know the antibiogram of the intensive care unit and to make institution policy for antibiotic use in ICU. Materials and methods: It was a prospective descriptive cross-sectional study conducted in the mixed surgical and medical intensive care unit of a tertiary care hospital for one year in 625 patients. Various clinical samples were collected aseptically and organisms were identified by the cultural characteristics, morphology, gram stain, and different biochemical test. Antimicrobial susceptibility was done with a disc diffusion test. Data collection was done in a preformed sheet that included all tested antibiotic and demographic variables. Statistical analysis was done by using statistical package for the social sciences. The result was presented as frequency and percentage. Results: Out of 625 samples, 135(22%) showed growth in culture. Among them, 96(71%) and 39(29%) were gram-negative bacilli and gram-positive cocci respectively. The tracheal aspirate was the most common type of specimen which comprised 49(36.29%) isolates. The most common organism was Staphylococcus aureus which accounts for 27(20%) isolates, followed by Acinetobacter baumanni 25(18.51%), Klebsiella pneumoniae 22(16.29%) and Pseudomonas aeurignosa 21(15.55%). The incidence of multidrug-resistant and extended drug resistance was 44(32.5%) and 45(33%) respectively. Meanwhile, the incidence of methicillin-resistant staphylococcus aureus was 70%. However, in the case of Acinetobacter baumannii and Enterobacteriaceae, all were sensitive to polymyxin B and meropenem. Conclusion:Antibiotics should be prescribed based on the antibiogram of individual intensive care units that can decrease antibiotic resistance. Polymyxin B and meropenem can be prescribed for gram-negative bacilli and vancomycin for Staphylococcus aureus.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Bhawna Sharma ◽  
Priya Sreenivasan ◽  
Manisha Biswal ◽  
Varun Mahajan ◽  
Vikas Suri ◽  
...  

Objective: Bacterial co-pathogens are common in various viral respiratory tract infections, leading to increased disease severity and mortality. Still, they are understudied during large outbreaks and pandemics. This study was conducted to highlight the overall burden of these infections in COVID-19 patients admitted to our tertiary care hospital, along with their antibiotic susceptibility patterns. Material and methods: During the six-month study period, clinical samples (blood samples, respiratory samples, and sterile body fluids, including cerebrospinal fluid [CSF]) of COVID-19 patients with suspected bacterial coinfections (at presentation) or secondary infections (after 48 hours of hospitalization) were received and processed for the same. Results: Clinical samples of 814 COVID-19 patients were received for bacterial culture and susceptibility. Out of the total patient sample, 75% had already received empirical antibiotics before the samples were sent for analysis. Overall, 17.9% of cultures were positive for bacterial infections. Out of the total patients with bacterial infection, 74% (108/146) of patients had secondary bacterial infections (after 48 hours of hospitalization) and 26% (38/146) had bacterial coinfections (at the time of admission). Out of the 143 total isolates obtained, the majority (86%) were gram-negative organisms, of which Acinetobacter species was the commonest organism (35.6%), followed by Klebsiella pneumoniae (18.1%). The majority (50.7%) of the pathogenic organisms reported were multidrug resistant. Conclusion: The overall rate of secondary bacterial infections (SBIs) in our study was lower (7.9%) than reported by other studies. A rational approach would be to adhere to the practice of initiating culture-based guidance for antibiotics and to restrict unnecessary empirical antimicrobial therapy.


Sign in / Sign up

Export Citation Format

Share Document