scholarly journals Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Markus Buchmann ◽  
Nikolaus Borowski ◽  
Thomas Leißner ◽  
Thomas Heinig ◽  
Markus A. Reuter ◽  
...  

Waste of electrical and electronic equipment (WEEE) is one of the fastest growing waste streams globally. Therefore, recycling of the valuable metals of this stream plays a vital role in establishing a circular economy. The smelting process of WEEE leads to significant amounts of valuable metals and rare earth elements (REEs) trapped in the slag phase. The effective manipulation of this phase transfer process necessitates detailed understanding and effective treatment to minimize these contents. Furthermore, an adequate process control to bring these metal contents into structures that make recycling economically applicable is required. Within the present study, a typical slag from a WEEE melting process is analyzed in detail. Therefore, the material is investigated with the help of X-ray computed tomography (XCT) and scanning electron microscopy (SEM)-based mineralogical analysis (MLA) to understand the typical structures and its implications for recycling. The influencing factors are discussed, and further processing opportunities are illustrated.

2018 ◽  
Vol 19 (12) ◽  
pp. 4049 ◽  
Author(s):  
Jing Cai ◽  
Yu Miao ◽  
Li Li ◽  
Hai Fan

The development of a multifunctional nanoprobe capable of non-invasive multimodal imaging is crucial for precise tumour diagnosis. Herein, we report a facile polymer-assisted method to produce Au-Fe3O4 nanocomposites (NCPs) for the dual-modal magnetic resonance (MR) and X-ray computed tomography (CT) imaging of tumours. In this approach, amino-functionalized Au nanospheres were first obtained by surface modification of the bifunctional polymer SH-PEG-NH2. Hydrophilic and carboxyl-functionalized Fe3O4 nanoparticles were produced by phase transfer of reverse micelle oxidation in our previous work. The Au nanoparticles were conjugated with hydrophilic Fe3O4 nanoparticles through an amide reaction. The obtained Au-Fe3O4 nanocomposites display a high r2 relativity (157.92 mM−1 s−1) and a Hounsfield units (HU) value (270 HU) at Au concentration of 8 mg/mL and could be applied as nanoprobes for the dual-modal MR/CT imaging of a xenografted tumour model. Our work provides a facile method to prepare Au-Fe3O4 nanocomposites for dual-modal MR/CT imaging, and this method can be extended to prepare other multifunctional nanoparticles for multimodal bioimaging.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Author(s):  
I.V. Yazynina ◽  
◽  
E.V. Shelyago ◽  
A.A. Abrosimov ◽  
N.E. Grachev ◽  
...  

2018 ◽  
Vol 18 (6) ◽  
pp. 432-443 ◽  
Author(s):  
Minsoo Song ◽  
Soong-Hyun Kim ◽  
Chun Young Im ◽  
Hee-Jong Hwang

Glutaminase (GLS), which is responsible for the conversion of glutamine to glutamate, plays a vital role in up-regulating cell metabolism for tumor cell growth and is considered to be a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed in both academia and industry. Most importantly, Calithera Biosciences Inc. is actively developing the glutaminase inhibitor CB-839 for the treatment of various cancers, and it is currently being evaluated in phase 1 and 2 clinical trials. In this review, recent efforts to develop small molecule glutaminase inhibitors that target glutamine metabolism in both preclinical and clinical studies are discussed. In particular, more emphasis is placed on CB-839 because it is the only small molecule GLS inhibitor being studied in a clinical setting. The inhibition mechanism is also discussed based on X-ray structure studies of thiadiazole derivatives present in glutaminase inhibitor BPTES. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are described in the hopes of providing useful information for the next generation of GLS inhibitors.


2020 ◽  
Vol 13 (1) ◽  
pp. 3-15
Author(s):  
Arunachalam Vasanthanathan ◽  
Uthirakumar Siddharth ◽  
Manivannan Vignesh ◽  
Radhakrishnan Pravin

Background: Nature has always played a vital role in the evolution of life forms. The design of products in accordance with nature’s design, popularly known as biomimicry, had played a vital role in pushing the technology and product effectiveness to the next level. Humans have long sought to mimic not just the design, but also the methodology adopted by certain animals. For example, the walking technique of vertebrates has been effectively mimicked for a quadruped robot to make a system more efficient by consuming less power. Thus indirectly, nature acts as a driving factor in pushing technological growth. Methods: The principle objective of this paper is to provide an overview of popular bio mimicked products inspired by nature. This paper emphasizes a wide variety of products developed in the field of materials inspired by nature. Results: Wall-climbing robots, Sonar, X-ray imaging, Sandwich and Honeycomb structures are some of the popular products and designs inspired by nature. They have resulted in better designs, better products with improved efficiency and thus have proven to be better alternatives. Some products and designs such as Samara drone, Riblet surfaces, DSSCs, Biomimetic Drills and Water turbines have plenty of scopes to replace conventional products and designs. Conclusion: While plenty of products, structures and designs have successfully replaced older alternatives, there is still a large scope for biomimicry where it could potentially replace conventional products and designs to offer better efficiency.


Author(s):  
Dr. Mahamad Yunus ◽  
KM Shailaja Singh ◽  
Suvarna Bhagavat ◽  
Arun Kumar Singh ◽  
Manish Kumar

Parinama Shoola is a disease of Annavaha Srotas (GIT) characterized by pain during digestion of food which tormates the process after every meal time and source of constant discomfort. It is a Pitta Pradhana Tridoshaja Vyadhi. Based on subjective features most of the Ayurvedic scholars considered as peptic ulcer, one of the most common digestive system disease rise due to the faulty diet and habits. Hence in the field of gastroenterology diagnosis and management of shoola plays a vital role. The present era is an era of new inventions and the modern medical science has stuck the mind of all by its day to day developments. It is true that modern medical science has grown up considerably; still it has to face a big question mark in so far as some miserable problems are concerned. The problem selected for this work is one among them. Considering the solemnity and incidence of the disease, the present study was aimed to observe barium meal X-ray findings in clinically diagnosed cases of Parinama Shoola to evaluate objective features for Parinama Shoola. It was observed that among 60 patients of Parinama Shoola, 30% were having deformed duodenal bulb, in 25% duodenal cap is deformed with mucosal erosion and 13.3% had duodenal ulcer found with ulcer crater in upper GI barium meal X-ray.


Sign in / Sign up

Export Citation Format

Share Document