scholarly journals Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 323 ◽  
Author(s):  
Qiang Wei ◽  
Weijiao Song

The mineralogical and chemical characteristics of the feed coals and coal combustion products (CCPs) from two power plants (Xilaifeng and Damo) that consume coals from the Wuda Coalfield, Inner Mongolia, were investigated, using XRD, SEM–EDS, XRF, and ICP-MS. The feed coals from Xilaifeng and Damo are both of high ash yield (52.93% and 48.36%, respectively), and medium and high total sulfur content (2.22% and 3.32%, respectively). The minerals in the feed coals are primarily composed of kaolinite, quartz, illite, pyrite, and, to a lesser extent, gypsum and anatase. In addition to the elevated incompatible elements (Nb, Ta, Zr, Hf and Th), Li and Hg are enriched in the feed coals from the Xilaifeng and Damo power plants, respectively. Rare earth elements and yttrium (REY) are more enriched in the feed coals from Xilaifeng (194 μg/g) than those of Damo (93.9 μg/g). The inorganic phases of CCPs from both power plants are mainly composed of amorphous phase, quartz, hematite, illite, and anhydrite. Compared with the feed coals, concentrations of most trace elements in the CCPs are elevated, and they are preferentially enriched in the fly ashes relative to the bottom ashes (*f/b > 1), especially F, As, Sr, Mo, Se, and Hg (*f/b > 2.5). Furthermore, most trace elements (Xilaifeng: excluding Li, Cr, Co, Ni, Rb, Nb and Cs; Damo: excluding Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Cs and Ba) are more enriched in the (fine) fly ashes relative to the laboratory high-temperature coal ashes (HTAs). The REY barely differentiate in either the fly ash or bottom ash from Xilaifeng. In contrast, the REY in the fine and coarse fly ashes from Damo have very similar H-type distribution patterns with negative Ce and slightly positive Y anomalies. Attention should be paid to the enriched toxic elements (including F, As and Hg) in the fly ashes from both power plants due to possible adverse environmental effect.

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1212
Author(s):  
Alaa Mohammed Razzaq ◽  
Dayang Laila Majid ◽  
Uday M. Basheer ◽  
Hakim S. Sultan Aljibori

Fly ash is the main waste as a result of combustion in coal fired power plants. It represents about 40% of the wastes of coal combustion products (fly ash, boiler ash, flue gas desulphurization gypsum and bottom ash). Currently, coal waste is not fully utilized and waste disposal remains a serious concern despite tremendous global efforts in reducing fossil fuel dependency and shifting to sustainable energy sources. Owing to that, employment of fly ash as reinforcement particles in metallic matrix composites are gaining momentum as part of recycling effort and also as a means to improve the specifications of the materials that are added to it to form composite materials. Many studies have been done on fly ash to study composite materials wear characteristics including the effects of fly ash content, applied load, and sliding velocity. Here, particular attention is given to studies carried out on the influence FA content on physical, mechanical, and the thermal behavior of Aluminium-FA composites. Considerable changes in these properties are seen by fly ash refinement with limited size and weight fraction. The advantage of fly ash addition results in low density of composites materials, improvement of strength, and hardness. It further reduces the thermal expansion coefficient and improve wear resistance.


1983 ◽  
Vol 15 (11) ◽  
pp. 163-191 ◽  
Author(s):  
Hay Leim ◽  
Magnusöm Sandstr ◽  
Tom Wallin ◽  
Anders Carne ◽  
Ulla Rydevik ◽  
...  

Within the Swedish project Coal-Health-Environment (Kol-Hälsa-Mi1jö) leaching studies were made on several types of coal ashes, fly ashes, bottom ashes and scrubber sludges. Studies were made on the effects of pH, pCl, pCO3. pEDTA and pSO4, in the leaching solution on the leaching of metals from coal ashes. As a model for the leaching system, we studied the leaching of Cr, Co, Ni, tu, Zn, Mo, Se, As, Cd and Pb. The leaching of the metals was found to increase with pH for pH less than 2 and pH greater than 9, and to decrease for 2 > pH > 6. The metal leaching behaviour may in part be explained by the mass-action law. We have also made long-term leaching tests of several coal ashes from Danish and Finnish Power Plants using leaching water of different pH. The dominating crystalline phases in the different coal ashes have been identified by X-ray diffraction technique. The major species in the different coal ashes were found to be mullite (3A12.2SiO2), α-quartz (Sio2) and the iron oxides magnetite and hematite. Leaching and X-ray studies were also made on the magnetic fraction of the fly ashes. Equilibrium analysis were made on the system Me-OH-Cl-CO32− - SO42−, where Me = Cr, Co, Ni, Cu, Zn, Mo, Se, As, Cd and Pb, partly using the computer program HALTAFALL. A model for the metal leaching from a coal ash deposit will be discussed.


Kilat ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 129-138
Author(s):  
Redaksi Tim Jurnal

This research on the utilization of coal-ash that is wasted at the coal-fired power plant is conducted with the intention to become an effort to alleviate environmental impact of the power plant. The by-production of such waste in coal-fired power plants is a direct consequence of the rising demand on electricity as one of human basic needs in modern lifestyle. Endeavor to save the environment is a manifestation of the good culture of environmental awareness; indeed, human being shall act responsibly for the soundness of the environment. Some sufficient amounts in different composition of coal bottom-ash from a coal-fired power plant mixed with another medium were implemented toward a variety of plants, i.e. a certain type of Orchid (“Moon” Orchid or Phalaenopsis amabilis), Tomato (Solanum lycopersicum) , and Sansevieria. A series of mixed medium with different composition (each particular composition is in triplicate), is prepared consisting of 0%, 25%, 50%. 75%, and 100% of Bottom Ash, consecutively. The observed result shows that Bottom Ash is not suitable for the orchid plant as its medium. This more probably results from the fact that the pH of Bottom Ash tends to be more alkaline, while the Orchid plant would only be growing optimally in acidic - normal condition. In the case of Tomato plant, Bottom Ash is usable to be the plant growing medium; in fact an increase of Bottom Ash percentage expedites the plant growth from its seed to become small plants. Another plant under observation is Sansivieria. Bottom Ash turns out to be suitable as a medium for this plant. In fact, this type of plant remains growing steadily and normally in media with variable percentage of Bottom Ash, all along the research procedure. Bottom Ash contains some nutrient that are beneficial to plants, such as Boron (B), Phosphorus (P) and among other elements are Cu, Zn, Mn, Mo dan Se. Most of coal-ashes tend to be alkaline with pH ranging from 8 to12.


2009 ◽  
Vol 1 (1) ◽  
pp. 50-62 ◽  
Author(s):  
James C. Hower ◽  
Thomas L. Robl ◽  
Gerald A. Thomas ◽  
Shelley D. Hopps ◽  
Margaret Grider

Author(s):  
Uyat Bayanzul ◽  
Jadambaa Temuujin ◽  
Amgalan Minjigmaa ◽  
Amgalan Bekhbaatar ◽  
B Battsetseg ◽  
...  

In Mongolia coal fired thermal power stations produce over 90% of the country’s electricity. Three thermal power stations located in Ulaanbaatar city produce more than 80% of all electricity produced in Mongolia. The annual output of fly ash and bottom ash from these thermal power stations is about 600,000 tons. The thermal power plants in Ulaanbaatar city use coal from Baganuur and Shivee-Ovoo deposits. This research was conducted to compare morphologies of various fly ashes and pond ashes from TPS in Mongolia. Fly ashes from TPS4 and pond ashes from TPS3 and TPS4 of Ulaanbaatar city were characterized by x-ray fluorescence (XRF), transmission electron microscopy (TEM), laser particle size distribution analyzer, specific surface area measurement (BET), and scanning electron microscopy (SEM). The chemical compositions of the fly ashes and pond ashes indicate that they are class C ashes. Specific surface areas of the fly ashes and pond ashes varied from 1.04 to 25.2 m2/g. Radiation measurements that were performed by γ-spectroscopy indicate that the radium equivalent changed from 292 to 761 Bq/kg in the various ashes.  


Sign in / Sign up

Export Citation Format

Share Document