scholarly journals Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia)

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 608 ◽  
Author(s):  
Aleksey S. Mekhonoshin ◽  
Tatiana B. Kolotilina ◽  
Artemy A. Doroshkov ◽  
Evgeniya E. Pikiner

Composition variations of Cr-spinel in high-Mg rocks of the Primorsky Ridge (Western Baikal region, Russia) are reported here. A specific feature of Cr-spinels in ultramafic rocks of the Primorsky Ridge is their noticeably high Ti content (up to 6.5 wt.%) compared to spinels in mantle peridotites. The presence of high TiO2 content in Cr-spinels enclosed in olivine crystals may be a clear indication of the primary magmatic nature of Ti enrichment. Two types of Cr-spinel were identified in ultramafic rocks from all intrusions. Cr-spinels of Type I are enclosed in the inner part of olivine crystals and are homogeneous Al-rich chromites and Fe2+-rich chromites. They are characterized by variable content of TiO2 (1.0–5.3 wt.%), moderately high Cr# (0.7–0.83), and low Fe3+# (0.20–0.34). Cr-spinels of type II occur in the interstitial space and occur as homogeneous and zoned grains with Al-rich chromite and Fe2+-rich chromite cores. Al-rich chromite cores have a composition similar to that of the Cr-spinel enclosed in olivine crystals. Fe2+-rich chromite cores have relatively high MgO (3.8–6.2 wt.%), Al2O3 (8–9 wt.%), and TiO2 (2.6–2.8 wt.%) content, low MnO (0.34–0.52 wt.%) content, and a low Fe3+# (0.25–0.27) ratio.

2019 ◽  
Vol 104 (10) ◽  
pp. 1455-1468
Author(s):  
Xianghui Fei ◽  
Zhaochong Zhang ◽  
Zhiguo Cheng ◽  
M. Santosh

Abstract The grossular-andradite solid solutions in garnet from skarn deposits in relation to hydrothermal processes and physicochemical conditions of ore formation remain controversial. Here we investigate garnet occurring in association with calcic and magnesian skarn rocks in the Cuihongshan polymetallic skarn deposit of NE China. The calcic skarn rocks contain three types of garnets. (1) Prograde type I Al-rich anisotropic garnets display polysynthetic twinning and a compositional range of Grs18–80Adr10–75. This type of garnet shows markedly low rare earth element (REE) contents (3.27–78.26 ppm) and is strongly depleted in light rare earth elements (LREE, 0.57–44.65 ppm) relative to heavy rare earth elements (HREE, 2.31–59.19 ppm). They also display a significantly negative Eu anomaly (Eu/Eu* of 0.03–0.90). (2) Fe-rich retrograde type II garnets are anisotropic with oscillatory zoning and own wide compositional variations (Grs1–47Adr30–95) with flat REE (13.73–377.08 ppm) patterns. (3) Fe-rich retrograde type III isotropic garnets display oscillatory zoning and morphological transition from planar dodecahedral {110} crystal faces to {211} crystal faces in the margin. Types III garnets exhibit relatively narrow compositional variations of Grs0.1–12Adr85–97 with LREE-enrichment (0.80–51.87 ppm), flat HREE patterns (0.15–2.46 ppm) and strong positive Eu anomalies (Eu/Eu* of 0.93–27.07 with almost all >1). The magnesian skarn rocks contain euhedral isotropic type IV Mn-rich garnet veins with a composition of Grs10–23Sps48–62Alm14–29. All calcic garnets contain considerable Sn and W contents. Type II garnet containing intermediate compositions of andradite and grossular shows the highest Sn contents (64.36–2778.92 ppm), albeit the lowest W range (1.11–468.44 ppm). Birefringence of garnet is probably caused by strain from lattice mismatch at a twinning boundary or ion substitution near intermediate compositions of grossular-andradite. The fine-scale, sharp, and straight garnet zones are probably caused by self-organization, but the compositional variations of zones from core to rim are probably caused by external factors. The zoning is likely driven by external factors such as composition of the hydrothermal fluid. REE concentrations are probably influenced by the relative proportion and temperature of the system. Moreover, the LREE-HREE fractionation of garnet can be attributed to relative compositions of grossular-andradite system. The W and Sn concentrations in garnet can be used as indicators for the exploration of W-Sn skarn deposits.


2019 ◽  
Vol 5 ◽  
pp. 3-18
Author(s):  
D.E. Saveliev

Accessory chromian spinels of lherzolites and dunites from a mantle section of the Nurali ophiolite massif are described in the paper. Lherzolites typically host anhedral chromian spinel grains associated with olivine, pyroxenes and plagioclase. The compositions of silicates and chromian spinels are typical of those from ophiolite mantle sections. Olivine and orthopyroxene are characterized by high Mg content (forsterite and enstatite); clinopyroxene is diopside. The compositions of chromian spinel on the Al–Cr–Fe+3 plot occur close to the Al–Cr side. The #Cr and #Mg values of chromian spinels increase from lherzolites to dunites. Both vermicular spinels trapping olivine and orthopyroxene fragments (type I) and symplectite-like intergrowths of chromian spinel and plagioclase (type II) are most genetically interesting. Type I formed during synkinematic growth in deformed silicate matrix. Type II possibly formed as a result of decompression breakdown of a high-P mineral phase enriched in Cr, Al and Ca (a knorringite-type garnet?). In dunites, numerous tiny chromian spinel rods (type IV) in plastic deformed olivine are observed along with typical euhedral chromian spinel (type III) with inclusions of olivine and pargasite. Latter ones locally occur closely to fne pargasite grains. The formation of chromian spinel rods is explained as a result deformation-induced segregation of trace elements on the structural defects of the olivine lattice. Figures 7. Tables 4. References 48.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

2020 ◽  
pp. 37-55 ◽  
Author(s):  
A. E. Shastitko ◽  
O. A. Markova

Digital transformation has led to changes in business models of traditional players in the existing markets. What is more, new entrants and new markets appeared, in particular platforms and multisided markets. The emergence and rapid development of platforms are caused primarily by the existence of so called indirect network externalities. Regarding to this, a question arises of whether the existing instruments of competition law enforcement and market analysis are still relevant when analyzing markets with digital platforms? This paper aims at discussing advantages and disadvantages of using various tools to define markets with platforms. In particular, we define the features of the SSNIP test when being applyed to markets with platforms. Furthermore, we analyze adjustment in tests for platform market definition in terms of possible type I and type II errors. All in all, it turns out that to reduce the likelihood of type I and type II errors while applying market definition technique to markets with platforms one should consider the type of platform analyzed: transaction platforms without pass-through and non-transaction matching platforms should be tackled as players in a multisided market, whereas non-transaction platforms should be analyzed as players in several interrelated markets. However, if the platform is allowed to adjust prices, there emerges additional challenge that the regulator and companies may manipulate the results of SSNIP test by applying different models of competition.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


Sign in / Sign up

Export Citation Format

Share Document