scholarly journals Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 650
Author(s):  
Shengjiang Du ◽  
Hanjie Wen ◽  
Shirong Liu ◽  
Chaojian Qin ◽  
Yongfeng Yan ◽  
...  

The Sanbao Mn–Ag (Zn-Pb) deposit located in the Laojunshan ore district is one of the most important deposits that has produced most Ag and Mn metals in southeastern Yunnan Province, China. Few studies are available concerning the distribution and mineralization of Ag, restricting further resource exploration. In this study, detailed mineralogy, chronology, and geochemistry are examined with the aim of revealing Ag occurrence and its associated primary base-metal and supergene mineralization. Results show that manganite and romanèchite are the major Ag-bearing minerals. Cassiterite from the Mn–Ag ores yielded a U–Pb age of 436 ± 17 Ma, consistent with the Caledonian age of the Nanwenhe granitic pluton. Combined with other geochemical proxies (Zn-Pb-Cu-Sn), the Sanbao Mn–Ag deposit may originally be of magmatic hydrothermal origin, rather than sedimentary. The Ag-rich (Zn-Pb (Sn)-bearing) ore-forming fluids generated during the intrusion of the granite flowed through fractures and overprinted the earlier Mn mineralization. Secondary Ag (and possibly other base-metals) enrichment occurred through later supergene weathering and oxidation.

2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Laura Simandl ◽  
George J. Simandl ◽  
Suzanne Paradis

Many exploration companies are now focusing on specialty materials that are associated with so-called ‘green technology’. These include ‘battery materials’, ‘magnet materials’ and ‘photovoltaic materials’, and many such commodities are also broadly labelled as ‘critical materials’ because they are seen as vital for industrial development, societal needs or national security. The definitions used for such materials are not always consistent among jurisdictions or across industry, and this paper attempts to clarify the criteria and address some common misconceptions. The distinction between major minerals (e.g. base metals) and ‘specialty materials’ (i.e. those mined or produced in much smaller amounts) is particularly important.   The markets for many specialty materials are growing faster than those for traditional ferrous, precious and base metals and they are often portrayed as excellent long-term investment opportunities. However, the small market bases for specialty materials and considerable uncertainty around growth projections (especially related to material substitutions and rapid technological change) need to be taken into consideration for objective assessment of the development potential of any proposed project, establishment of new supply chains by major corporations, and responsible decision-making (mineral policy) by government. In the short-term, projects aimed at specialty materials (materials with a small market base) cannot benefit from economy of scale, and their development hinges on commercially proven metallurgical processes, unless they are supported by governments or end-users.   Several specialty metals (e.g. germanium, indium, cadmium, and cobalt) are commonly obtained as by-product of base metal extraction. In such cases, systematic testing of base metal ores for their specialty metal content may justify the addition of relevant recovery circuits to existing smelters. If positive results are obtained, the need for targeting new sources of such specialty metals as primary exploration targets may be reduced or eliminated.   Where market conditions permit and concerns about the future availability of materials seem reliable, grass-roots exploration for specialty materials is warranted, and pre-competitive government involvement may be justified to promote such development efforts.


2008 ◽  
Vol 33-37 ◽  
pp. 1345-1350 ◽  
Author(s):  
W.K. Joo ◽  
Yi Qi Wang ◽  
H.T. Yang ◽  
W.C. Lee ◽  
C.Y. Sim ◽  
...  

The microstructures and mechanical properties of OFHC copper/STKM 11A for D-tube joints brazed using BAg filler metal at 870 °C for 20 minutes in NH3 atmospheres were performed. Interfacial microstructures were observed in reaction layer. A brazing strength causes of decline with defects of pin hole and base metal by lack of penetration. In tensile test, the properties of joints clearance of 0.01mm are better than other joints clearance that has yield strength of elasticity area with the brazing length of 2.5mm, and also suitable for the case of brazing length of 5.0mm. According to the results of FEA (finite element analysis) on the tensile test, the maximum stress and strain were generated apart from the interface in large deformation. Diffused layer was formed by counter diffusion action of base metal and filler metal layer, and crack between two base metals was not discovered. This is the main reason that fracture of test piece does not appear in copper base metal, and brazing department forms good junctures.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 572 ◽  
Author(s):  
Martin Števko ◽  
Jiří Sejkora ◽  
Zdeněk Dolníček ◽  
Pavel Škácha

Selenium-rich Au–Ag mineralization has been discovered in the Kremnica ore district, central Slovakia. The mineralization is hosted by a single quartz–dolomite vein hosted by Neogene propyllitized andesites of the Kremnica stratovolcano. Ore mineralogy and crystal chemistry of individual ore minerals have been studied here. The early base-metal ore mineralization composed of pyrite, sphalerite, and chalcopyrite lacks selenium, whereas the superimposed Au–Ag paragenesis is Se-enriched. The Au–Ag alloys, uytenbogaardtite, minerals of the galena–clausthalite series, acanthite–naumannite series, diaphorite, miargyrite, pyrargyrite–proustite, polybasite group, minerals of the tetrahedrite group and andorite branch (andorite IV, andorite VI, Ag-excess fizélyite), freieslebenite, and rare Pb–Sb sulphosalts (scaiinite, robinsonite, plagionite) have been identified here. Besides selenides, the most Se-enriched phases are miargyrite, proustite–pyrargyrite, and polybasite–pearceite, whose Se contents are among the highest reported worldwide. In addition, one new phase has been found, corresponding to a Se-analogue of pearceite containing 2.08–3.54 apfu Se. The style of mineralization, paragenetic situation, and chemical trends observed in individual minerals are comparable to those of Au–Ag low-sulphidation epithermal Au–Ag mineralizations of the Kremnica and neighboring Štiavnica and Hodruša-Hámre ore districts. However, the pronounced enrichment in selenium is a specific feature of the studied vein only.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 239
Author(s):  
Taotao Yan ◽  
Dongsheng Liu ◽  
Chen Si ◽  
Yu Qiao

Constraining the duration of magmatism is of vital importance to the understanding of the magmatic-hydrothermal mineral system. The Bozhushan batholith, located in the middle section of the southeastern Yunnan ore district, mainly consists of biotite monzogranite and monzogranite. Many Sn–W–polymetallic deposits are developed around the Bozhushan batholith, but their temporal and genetic relationships remain controversial. LA-ICP-MS U–Pb zircon and monazite dating were respectively conducted on the same two samples, yielding weighted mean 206Pb/238U zircon ages of 85.1 ± 0.7 and 85.6 ± 0.9 Ma, and weighted mean 206Pb/238U monazite ages of 87.1 ± 0.9 and 88.1 ± 1.1 Ma. The crystallization ages of S-type granites obtained from the zircon U–Th–Pb system and monazite U–Th–Pb system are consistent within the analytical errors. After combining the new ages obtained in this study with recently published U–Pb zircon and cassiterite ages from the giant Baniuchang Ag–Sn–Pb–Zn deposit in the north, and U–Pb zircon and Re-Os molybdenite ages from the large Guanfang W deposit in the south, a temporal framework of magmatism-mineralization in the Bozhushan region has been established. The duration of magmatic activity at Bozhushan is about 7 Ma, with W mineralization occurring at ca. 92 Ma and Sn mineralization at 88–87 Ma.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1497 ◽  
Author(s):  
Liuyang Bai ◽  
Yuge Ouyang ◽  
Jun Song ◽  
Zhi Xu ◽  
Wenfu Liu ◽  
...  

Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction.


2021 ◽  
Author(s):  
◽  
Jacob Leath

<p>The southern Kermadec Arc – Havre Trough (SKAHT) is an intra-oceanic arc – back-arc system where the Pacific plate is subducting beneath the Australian plate. The Kermadec volcanic arc front consists of 33 volcanic centres, four of which host hydrothermal mineralization (Brothers, Haungaroa, Rumble II West, and Clark) such as volcanogenic massive sulfide (VMS) deposits, which are characterised by high concentrations of base and precious metals (e.g., Au, Cu, Zn, Pb). The sources of these metals are strongly tied to the metal contents within underlying magmatic rocks and associated magmatic systems with which the hydrothermal fluids interact. Understanding the sources, movements, and accumulation of metals associated with porphyry copper and exhalative base metal deposits within a subduction – arc setting remains limited.  This study reports major, trace, and volatile element contents in basaltic groundmass glasses and olivine-hosted melt inclusions from lavas from four locations within the arc – back-arc setting of the SKAHT. The focus is on understanding the controls on base metal (Pb, Cu, Zn, Mo, V) contents in the magmas. The sample locations, Rumble III and Rumble II West volcanoes, and back-arc Basins D and I, form an arc-perpendicular transect extending from arc front into the back-arc. The analysed melt inclusion and groundmass glasses are all basalt to basaltic andesite in composition, with back-arc basin samples more mafic than arc front volcano samples. The magmatic evolution of the melts is primarily controlled by crystal fractionation of olivine + pyroxene + plagioclase. All glasses have undergone variable degassing, indicated by an absence of detectable CO₂ and curvilinear decreases in S contents with increasing SiO₂. Of the volatile phases analysed, only Cl appears unaffected by degassing.  Distinct compositional differences are apparent between arc front and back-arc melts. The arc front magmas formed from higher degrees of melting of a less fertile mantle source and are more enriched in trace elements then the back-arc magmas due to greater additions of slab-derived aqueous fluids to their source. Magmas from a single arc front volcano (Rumble II West) incorporate melts that have tapped variably enriched sources, indicating heterogeneity of the mantle at small scales. Significant variation in mantle composition, however, is also apparent laterally along strike of the arc. Rumble III volcano and Basin I lie on an arc-perpendicular transect south of Rumble II West volcano and Basin D. Their greater enrichment in trace elements and higher concentrations of base metals than Rumble II West and Basin D lavas can be attributed to higher fluxes of subduction derived components.  Base metals (Cu, Zn, Pb, Mo, and V) are variably enriched in the SKAHT melts compared with typical mid-ocean ridge basalts with relative enrichments in the order Pb >> Cu > Mo, V > Zn. All metals appear to be affected by mantle metasomatism related to slab-derived fluids, either directly from slab components introduced to the mantle source (e.g., Pb) or through mobilisation of metals within the ambient mantle wedge. The apparently compatible behaviour of Zn, Cu, and V in the mantle means that these elements may be enriched in arc front magmas relative to back-arc magmas by higher degrees of partial melting and/or melting of more depleted sources.  All base metals behave incompatibly in the magma during crystal fractionation between 48 – 56 wt.% SiO₂. Lead and Cu concentrations, however, begin to level out from ~ 52 wt.% SiO₂ suggesting some subsequent loss to fractionating volatile phases as metal sulfide complexes. Rumble III samples show a decrease in metal concentration (Pb, Cu, V), from melt inclusions to groundmass glasses, suggestive of more significant loss associated with sulfur degassing.  Although other factors such as heat generation, hydrothermal flow, fault systems, and magma venting are key in the development of VMS deposits, this study shows that variations in subduction parameters can significantly affect metal concentrations in arc magmas that may host hydrothermal systems, and hence the amount of metals available to be scavenged into the deposits.</p>


Sign in / Sign up

Export Citation Format

Share Document