scholarly journals First-Principles Study of the Elastic Properties of Nickel Sulfide Minerals under High Pressure

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 737 ◽  
Author(s):  
Qiuyuan Zhang ◽  
Ye Tian ◽  
Shanqi Liu ◽  
Peipei Yang ◽  
Yongbing Li

Nickel sulfide minerals, an important type of metal sulfides, are the major component of mantle sulfides. They are also one of the important windows for mantle partial melting, mantle metasomatism, and mantle fluid mineralization. The elasticity plays an important role in understanding the deformation and elastic wave propagation of minerals, and it is the key parameter for interpreting seismic wave velocity in terms of the composition of the Earth’s interior. Based on first-principles methods, the crystal structure, equation of state, elastic constants, elastic modulus, mechanical stability, elastic anisotropy, and elastic wave velocity of millerite (NiS), heazlewoodite (Ni3S2), and polydymite (Ni3S4) under high pressure are investigated. Our calculated results show that the crystal structures of these Ni sulfides are well predicted. These Ni sulfides are mechanically stable under the high pressure of the upper mantle. The elastic constants show different changing trends with increasing pressure. The bulk modulus of these Ni sulfides increases linearly with pressure, whereas shear modulus is less sensitive to pressure. The universal elastic anisotropic index AU also shows different changing trends with pressure. Furthermore, the elastic wave velocities of Ni sulfides are much lower than those of olivine and enstatite.

2017 ◽  
Vol 31 (32) ◽  
pp. 1750254
Author(s):  
Leini Wang ◽  
Zhang Jian ◽  
Wei Ning

We have investigated the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressure by performing density functional theory (DFT). The result of phonon band structure shows B2-phase AlY exhibits dynamical stability. Then, the elastic properties of AlY under high pressure have been discussed. The elastic constants of AlY increase monotonically with the increase of the pressure and all the elastic constants meet the mechanical stability standard under high pressure. By analyzing the Poisson’s ratio [Formula: see text] and the value of B/G of AlY, we first predicted that AlY undergoes transformation from brittleness to ductility at 30 GPa and high pressure can improve the ductility. To obtain the thermodynamic properties of B2-phase AlY, the quasi-harmonic Debye model has been employed. Debye temperature [Formula: see text], thermal expansion coefficient [Formula: see text], heat capacity C[Formula: see text] and Grüneisen parameter [Formula: see text] of B2-phase AlY are systematically explored at pressure of 0–75 GPa and temperature of 0–700 K.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3058-3070
Author(s):  
Yu Zhou ◽  
Lan-Ting Shi ◽  
A-Kun Liang ◽  
Zhao-Yi Zeng ◽  
Xiang-Rong Chen ◽  
...  

The structures, phase transition, mechanical stability, electronic structures, and thermodynamic properties of lanthanide phosphates (LaP and LaAs) are studied in the pressure range of 0 to 100 GPa by first principles.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2015 ◽  
Author(s):  
Xianshi Zeng ◽  
Rufang Peng ◽  
Yanlin Yu ◽  
Zuofu Hu ◽  
Yufeng Wen ◽  
...  

Using first-principles calculations based on density functional theory, the elastic constants and some of the related physical quantities, such as the bulk, shear, and Young’s moduli, Poisson’s ratio, anisotropic factor, acoustic velocity, minimum thermal conductivity, and Debye temperature, are reported in this paper for the hexagonal intermetallic compound Ti 3 Al. The obtained results are well consistent with the available experimental and theoretical data. The effect of pressure on all studied parameters was investigated. By the mechanical stability criteria under isotropic pressure, it is predicted that the compound is mechanically unstable at pressures above 71.4 GPa. Its ductility, anisotropy, and Debye temperature are enhanced with pressure.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1445
Author(s):  
Tahani A. Alrebdi ◽  
Mohammed Benali Kanoun ◽  
Souraya Goumri-Said

We investigated structure optimization, mechanical stability, electronic and bonding properties of the nanolaminate compounds Ti2PbC, Zr2PbC, and Hf2PbC using the first-principles calculations. These structures display nanolaminated edifices where MC layers are interleaved with Pb. The calculation of formation energies, elastic moduli and phonons reveal that all MAX phase systems are exothermic, and are intrinsically and dynamically stable at zero and under pressure. The mechanical and thermal properties are reported with fundamental insights. Results of bulk modulus and shear modulus show that the investigated compounds display a remarkable hardness. The elastic constants C11 and C33 rise more quickly with an increase in pressure than that of other elastic constants. Electronic and bonding properties are investigated through the calculation of electronic band structure, density of states, and charge densities.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050220
Author(s):  
Yingying Chen ◽  
Xilong Dou ◽  
Wenjie Zhu ◽  
Gang Jiang ◽  
Aijie Mao

The structures with different compositions of the binary Mg–Y alloys have been predicted by first-principles calculations combined with an unbiased Crystal structure Analysis by Particle Swarm Optimization (CALYPSO) structure searching method. The two already known stoichiometries alloys of Mg1Y1 with Pm-[Formula: see text] symmetry and Mg3Y1 with Fm-[Formula: see text] are confirmed, and a new stoichiometry alloy of Mg1Y3 with [Formula: see text] symmetry is proposed. The dynamical and mechanical stabilities for the three alloys at different pressures are investigated by phonon spectra and mechanical stability criteria, respectively. Subsequently, the bulk modulus, shear modulus, Young’s modulus, the brittleness/ductile behavior, the elastic anisotropy as well as Vickers hardness for the three alloys at 0 GPa are discussed in detail. The results show that the Mg1Y1, Mg3Y1 and Mg1Y3 alloys improve the hardness and stiffness compared with pure Mg, and Mg1Y3 alloy is of the best ductility in the three alloys. Meanwhile, the three alloys exhibit anisotropic. Moreover, the thermodynamic properties, such as Debye temperature, heat capacity at constant volume, entropy and Helmholtz free energy for the three stable alloys, are predicted and discussed.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950193
Author(s):  
Yingjiao Zhou ◽  
Qun Wei ◽  
Bing Wei ◽  
Ruike Yang ◽  
Ke Cheng ◽  
...  

The elastic constants and phonon dispersion of metallic C[Formula: see text] are calculated by first-principles calculations. The results show that the metallic C[Formula: see text] is mechanically and dynamically stable under high pressure. The variations of G/B ratio, Poisson’s ratio, elastic anisotropy, acoustic velocity and Debye temperature at the pressure range from 0 GPa to 100 GPa are analyzed. The results reveal that by adjusting the pressures the elastic anisotropy and thermodynamic properties could be improved for better applicability.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050035
Author(s):  
Xia Xu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Zheng-Tang Liu ◽  
Qi-Jun Liu

In this paper, the structural, electronic, elastic, mechanical and optical properties of monoclinic [Formula: see text] are studied using the first-principles density functional theory (DFT). The calculated structural parameters are consistent with the experimental data. The elastic constants of [Formula: see text] structures are calculated, indicating that [Formula: see text] shows mechanical stability and elastic anisotropy. According to the [Formula: see text] and Poisson’s ratio, monoclinic [Formula: see text] shows a brittle manner. The energy band structure, density of states, charge transfers and bond populations are given. And the band structure shows that the material is a metal conductor. Moreover, the optical properties and optical anisotropy of [Formula: see text] are shown and analyzed.


2016 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Salah Daoud

The mechanical behavior, sound velocities and Debye temperature of beryllium-selenide (BeSe) semiconductor under pressure up to 50 GPa have been estimated using the structural parameters and elastic constants of Fanjie Kong and Gang Jiang (Physica B 404 (2009) 3935-3940). The Pugh ratio, the directional dependence of elastic wave velocity, the longitudinal, transverse and average sound velocities, and the Debye temperature are successfully predicted and analyzed in comparison with the available theoretical data. The analysis of the Pugh ratio indicates that this compound is prone to brittle behavior. Our obtained results of the longitudinal, transverse and average sound velocities at high pressure indicate that these of Kong and Jiang (Physica B 404 (2009) 3935-3940) are not correctly predicted.


Sign in / Sign up

Export Citation Format

Share Document