scholarly journals Impact of Diagenesis on the Reservoir Properties of the Cretaceous Sandstones in the Southern Bredasdorp Basin, Offshore South Africa

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 757
Author(s):  
Temitope Love Baiyegunhi ◽  
Kuiwu Liu ◽  
Oswald Gwavava ◽  
Christopher Baiyegunhi

The Cretaceous sandstone in the Bredasdorp Basin is an essential potential hydrocarbon reservoir. In spite of its importance as a reservoir, the impact of diagenesis on the reservoir quality of the sandstones is almost unknown. This study is undertaken to investigate the impact of digenesis on reservoir quality as it pertains to oil and gas production in the basin. The diagenetic characterization of the reservoir is based on XRF, XRD SEM + EDX, and petrographic studies of 106 thin sections of sandstones from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 in the basin. The main diagenetic processes that have affected the reservoir quality of the sandstones are cementation by authigenic clay, carbonate and silica, growth of authigenic glauconite, dissolution of minerals and load compaction. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed up by the development of partial pore-lining and pore-filling clay cements, particularly illite. This clay acts as pore choking cement, which reduces porosity and permeability of the reservoir rocks. The scattered plots of porosity and permeability versus cement + clays show good inverse correlations, suggesting that the reservoir quality is mainly controlled by cementation and authigenic clays.

2021 ◽  
pp. 90-110
Author(s):  
V.Ye. Shlapinskiy ◽  
H.Ya. Havryshkiv ◽  
Yu.P. Haievska

More than 6 million tons of the oil have been extracted in the Skybа Zone of the Ukrainian Carpathians. In particular, 4.2 million tons of oil (85.7% of total production) were obtained from the Yamna sandstones of Paleocene, which are characterized by satisfactory physical properties. Most of the areas of fields that exploited them are located in the Boryslav oil and gas production area. Among them are such oil fields as Skhidnytsko-Urytske (more than 3.8 million tons of oil extracted), Violeta, Faustina, MEP, Miriam and Ropne. Outside this area, oil was extracted in Strilbychi and Staraya Sol. At most of these fields, oil horizons are at a depth of only 100-800 m. The gas and condensate are extracted at the field of Tanyavа in the wing of the Vytvytska Luska of the Berehova Skyba, which has been torn off by the thrust. In addition, a very large number of natural oil and gas manifestations - direct signs of oil and gas potential - have been recorded in the Skyba Zone. All this indicates the potential prospects of structures within the Skyba Zone, including shallow ones. The distribution area of Yamna sandstones is much larger than the area of these deposits. The distribution area of sandstones of Yamna is much larger than the area of these deposits. It occupies about half of the area of Skyba Zone. Part of it can be considered promising, removing areas where of Yamna sandstones are present on the day surface, although, even in such conditions, they are in some cases industrially oil-bearing (Strelbychi oil field). Sandstones of Yamna are characterized by satisfactory reservoir properties., The calculated porosity and permeability reach the maximum values at known deposits: 0.182 and 130 ∙ 10–3 microns2 respectively, and the estimated thickness of 13.5 m. In the Folded Carpathians and, especially, within the north-eastern fragments (Beregova, Oriv, Skoliv) in different years performed a large amount of field seismic surveys. On the basis of the obtained materials, for the first time in the Carpathian region structural constructions were made on the reflecting horizons in the Paleocene (Yamna Formation) and in the Stryi Formation of the Upper Cretaceous. This article evaluates the prospects of these research objects. The Khodkiv and Osichnyanska structures of Berehova Skyba are recommended for conducting search works.


Author(s):  
А.А. Умаев ◽  
А-М.Б. Измаилов ◽  
Т-А.У. Мусаев ◽  
А.Ш. Халадов

Наряду с совершенствованием эксплуатации скважин и повышением продуктивности за счет работ по воздействию на призабойную зону пласта, одним из главных вопросов является повышение нефтеотдачи пласта. Актуальность этих вопросов не вызывает сомнения применительно к месторождениям Северного Кавказа. Особенные геологическиеусловия присущие продуктивным пластам Чеченской республики (большая глубина залегания, высокая температура и давление, неоднородность коллекторских свойств и т.д.) затрудняют или полностью исключают возможность применения известных методов физико-химического воздействия на пласты с целью интенсификации отборов нефти и повышения нефтеотдачи. На нефтегазодобывающих объектах ЧР применялись основные физико-химические, тепловые и гидродинамические методы повышения нефтеотдачи пластов Along with improving the operation of wells and increasing productivity due to the work on the impact on the bottomhole formation zone, one of the main issues is the increase in oil recovery. The relevance of these issues does not raise doubts in relation to the fields of the North Caucasus. The special geological conditions inherent in the productive formations of the Chechen Republic (large depth, high temperature and pressure, heterogeneity of reservoir properties, etc.) make it difficult or completely exclude the possibility of using known methods of physicochemical treatment of formations in order to intensify oil production and increase oil recovery. The main physical, chemical, thermal and hydrodynamic methods of enhanced oil recovery were used at oil and gas production facilities in the Chechen Republic


2019 ◽  
Vol 22 (1) ◽  
pp. 185-195
Author(s):  
Chuc Dinh Nguyen ◽  
Xuan Van Tran ◽  
Kha Xuan Nguyen ◽  
Huy Nhu Tran ◽  
Tan Thanh Mai

To date, most of the oil and gas production in Cuu Long Basin (CLB) is contributed from structural traps, making them more and more depleted after years of exploitation. Exploration activities in CLB, therefore, are shifting towards other traps, including stratigraphic and/or combination ones. The results of exploration and appraisal activities in recent years have increasingly discovered more hydrocarbons in the Oligocene section; some of them were discovered in combination/ stratigraphic traps. Many studies on Oligocene targets in Southeast CLB have been carried out but only a few mention nonstructural traps. This leads to uncertainty about the forming mechanisms and distribution, as well as unevaluated hydrocarbon potential of these traps. An integrated approach- utilizing methods of seismic sequence stratigraphy, seismic attribute interpretation, and petrophysical/ petrographical analysis- was applied in this research to identify the forming mechanisms of Oligocene combination/ stratigraphic traps in southeast area of CLB and to evaluate their reservoir quality. The research results show that the key forming factor for stratigraphic traps of sand body is lithology change and the one for pinch-out stratigraphic traps is tapering off of sand layers landward or toward the horsts. The reservoir quality of these traps ranges from moderate to good. By integratedly applying the methods, the forming mechanisms and reservoir quality of Oligocene stratigraphic traps could be delineated. In order to optimize the next-stage exploration strategy in CLB, detailed studies on petroleum system, especially top and bottom seals, and the hydrocarbon potential of these stratigraphic traps, need to be carried out.  


Author(s):  
Trond G. Gru¨ner ◽  
Lars E. Bakken

The development of wet gas compressors will enable increased oil and gas production rates and enhanced profitable operation by subsea well-stream boosting. A more fundamental knowledge of the impact of liquid is essential with regard to the understanding of thermodynamic and fluid dynamic compressor behavior. An open-loop impeller test facility was designed to investigate the wet gas performance, aerodynamic stability, and operation range. The facility was made adaptable for different impeller and diffuser geometries. In this paper, the wet gas test facility and experimental work concerning the impact of wet gas on a representative full-scale industrial impeller are presented. The centrifugal compressor performance was examined at high gas volume fractions and atmospheric inlet conditions. Air and water were used as experimental fluids. Dry and wet gas performance was experimentally verified and analyzed. The results were in accordance with previous test data and indicated a stringent influence of the liquid phase. Air/water tests at atmospheric conditions were capable of reproducing the general performance trend of hydrocarbon wet gas compressor tests at high pressure.


Energy Policy ◽  
2019 ◽  
Vol 129 ◽  
pp. 738-748 ◽  
Author(s):  
Stephanie A. Malin ◽  
Adam Mayer ◽  
James L. Crooks ◽  
Lisa McKenzie ◽  
Jennifer L. Peel ◽  
...  

Author(s):  
Kumarswamy Karpanan ◽  
Craig Hamilton-Smith

Subsea oil and gas production involves assemblies such as trees, manifolds, and pipelines that are installed on sea floor. Each of these components is exposed to severe working conditions throughout its operational life and is difficult and expensive to repair or retrieve installed. During installation and operation, a rig/platform and several supply vessels are stationed on the waterline directly above the well and installed equipment below. If any object is to be dropped overboard, it presents a hazard to the installed equipment. A subsea tree comprises of a number of critical components such as valves and hydraulic actuators, in addition to several electrical components such as the subsea control module and pressure/temperature gauges. Their ability to operate correctly is vital to the safe production of oil and gas. If an object were to impact and damage these components, resulting in their inability to operate as intended, the consequences could be severe. In this paper, a typical subsea tree frame is analyzed to ensure its ability to withstand the impact from an object accidentally dropped overboard. This was accomplished using nonlinear dynamic Finite Element Analysis (FEA). In this study, the framework was struck by a rigid body at terminal velocity, resulting in a given impact energy. Displacements and resultant strain values at critical locations were then compared to allowable limits to ensure compliance to the design requirements.


2015 ◽  
Vol 21 (5) ◽  
pp. 1123-1137 ◽  
Author(s):  
Doris Gross ◽  
Marie-Louise Grundtner ◽  
David Misch ◽  
Martin Riedl ◽  
Reinhard F. Sachsenhofer ◽  
...  

AbstractSiliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas–water contact within hydrocarbon reservoirs.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


Sign in / Sign up

Export Citation Format

Share Document