scholarly journals Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 764
Author(s):  
Yuriy Kublitskiy ◽  
Marianna Kulkova ◽  
Olga Druzhinina ◽  
Dmitry Subetto ◽  
Miglė Stančikaitė ◽  
...  

The article is devoted to a reconstruction of the sedimentation processes in Kamyshovoye Lake (the Kaliningrad Region, Russia) during the Late Glacial and Holocene. The results of the geochemical analysis of Kamyshovoye Lake’s bottom sediments, accompanied by statistical processing and detailed radiocarbon dating, are presented. It was established that a high proportion of mineral matter dominated in the intervals between 15,000 and 11,400 and between 1400 and 600 cal y BP; enrichment with carbonates was noted between 11,400 and 5200 cal y BP and during the past 600 years; and a high percentage of organic matter was recorded between 7800 and 600 cal y BP. We conclude that the increase in mineral matter was influenced by such factors as reduced vegetation cover due to natural and anthropogenic processes, aeolian transfer, and dead-ice melting during the Late Glacial. The increase in carbonate matter was mainly associated with humidity and the reduction conditions of the lake ecosystem. Organogenic matter content was affected by the autochthonic (biological) productivity of the lake, which directly depends on more favorable climatic conditions.

2007 ◽  
Vol 29 (-1) ◽  
pp. 23-43 ◽  
Author(s):  
Krystyna Bałaga

Transformation of Lake Ecosystem into Peat Bog and Vegetation History Based on Durne Bagno Mire (Lublin Polesie, E Poland)In this paper, the history of Durne Bagno, i.e. the largest peat bog in the Lublin Polesie, is shown. Peat bogs are a unique element of the Polesie landscape. They occur mostly in the subregion of the Łęczna-Włodawa Lake District occupying 1.07% of its area. They fill basin-shaped depressions without outflow, often in the immediate vicinity of dystrophic lakes. Based on interdisciplinary research, the changes of vegetation cover and the Durne Bagno lake-mire ecosystem in the Late Glacial and Holocene are presented. The environmental conditions are reconstructed from pollen analysis, detailed identification of algae ofPediastrumgenus and chemical composition of deposits, together with the results of Cladocera analysis. The distribution of archaeological artefacts in the surroundings of Durne Bagno peat bog gives the view on the intensity of settlement in this area. The duration of the limnic and mire stages during the development of the ecosystem was different in different parts of the examined depression. In its central part the limnic stage lasted about 8000 years and included the period from the Late Glacial to the middle Holocene (to about 6000 BP). It is represented by 7 pollen zones and 6 chemical zones. The mire stage contained a part the Atlantic period and on the Subboreal and Subatlantic periods. It is represented by 4 pollen zones and 5 chemical zones. Limnic and mire deposits differ widely in the concentrations of chemical elements. The contents of mineral material and almost all analyzed elements in limnic deposits are high. These deposits are characterized by positive correlation between the contents of Zn and Cr and the frequency of Cladocera fauna. Peat contains very low amount of mineral material. The contents of Ca, Sr and Ba are rather high in sedgemoss peat. The concentrations of these elements decrease upwards due to oligotrophic processes and sedentation of sedge-Eriophorum-Sphagnumpeat. Peat succession was modified by pastoral economy of prehistoric man.


2011 ◽  
Vol 38 (2) ◽  
pp. 172-181 ◽  
Author(s):  
Khikmatulla Arslanov ◽  
Olga Druzhinina ◽  
Larisa Savelieva ◽  
Dmitry Subetto ◽  
Ivan Skhodnov ◽  
...  

Abstract The raised bog sediments that have been continuously accumulated over time represent the most suitable natural object which enables us to reconstruct Late Glacial and Holocene vegetation and palaeoclimates. Bog peat consists of organic carbon formed in situ. It contains moss, plant fragments and microfossils that are necessary for the study of palaeovegetation and palaeoclimate. However, a successful study of palaeoenvironment can be carried out on the basis of investigation of a great quantity of samples along the whole peatbog thickness. In the present paper, the authors present the results of palynological, botanical investigations and radiocarbon dating of 31 peat samples taken from the raised bog Velikoye, located in the eastern part of Kaliningrad Region. The data obtained have enabled us to reconstruct the palaeovegetation, reveal the evolution of the bog and determine rate of peat formation at different evolutional stages over the last 7500 cal BP.


2020 ◽  
Vol 2 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Vincent Jomelli ◽  
Emmanuel Chapron ◽  
Vincent Favier ◽  
Vincent Rinterknecht ◽  
Régis Braucher ◽  
...  

2016 ◽  
Vol 53 (5) ◽  
pp. 494-505 ◽  
Author(s):  
Jean-Philippe Martin ◽  
Daniel Germain

Mid-altitude, mid-latitude mountains are complex environments owing to their Pleistocene glacial heritage, the importance of geomorphic processes on the steep slopes, and the climatic conditions that are often close to periglacial. These factors, along with the fragmentation of the alpine habitats, enhance the topographic and floristic diversity of these environments in northeastern North America. Through case studies, this synthesis underlines the interactions between the geosphere (glacial, paraglacial, and periglacial processes), the atmosphere (climatic fluctuations), and the biosphere (vegetation establishment and evolution to the present day) that explain the low elevation of the northeastern North American alpine environment and that testify to its complexity. Vegetation established earlier in the southern ranges, following the same general trend as the Laurentian Ice Sheet recession. However, local factors such as ice retreat, response to global-scale climate changes, and paraglacial processes acted in synergy to increase the resilience and to influence the occurrence of alpine landscapes. The establishment of the latter environment can therefore be considered to be azonal. Finally, our findings highlight the lack of a conceptual framework, systemic studies, and multi-proxy reconstructions of alpine environments located at the limit of bioclimatic zones controlled by the equilibrium between biostatic and rhexistatic regimes.


2006 ◽  
Vol 65 (1) ◽  
pp. 20-32 ◽  
Author(s):  
José Iriarte

AbstractThis article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.


Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.


2016 ◽  
Author(s):  
Nathan Stansell ◽  
◽  
Donald T. Rodbell ◽  
Joseph M. Licciardi ◽  
Mark B. Abbott ◽  
...  

2010 ◽  
Vol 39 (10) ◽  
pp. 2237-2245 ◽  
Author(s):  
Edney Pereira da Silva ◽  
Carlos Bôa-Viagem Rabello ◽  
Luiz Fernando Teixeira Albino ◽  
Jorge Victor Ludke ◽  
Michele Bernardino de Lima ◽  
...  

This research aimed at generating and evaluating prediction equations to estimate metabolizable energy values in poultry offal meal. The used information refers to values of apparent and true metabolizable energy corrected for nitrogen balance (AMEn and TMEn) and for chemical composition of poultry offal meal. The literature review only included published papers on poultry offal meal developed in Brazil, and that had AMEn and TMEn values obtained by the total excreta collection method from growing broiler chickens and the chemical composition in crude protein (CP), ether extract (EE), mineral matter (MM), gross energy (GE), calcium (Ca) and phosphorus (P). The general equation obtained to estimate AMEn values of poultry offal meal was: AMEn = -2315.69 + 31.4439(CP) + 29.7697(MM) + 0.7689(GE) - 49.3611(Ca), R² = 72%. For meals with high fat contents (higher than 15%) and low mineral matter contents (lower than 10%), it is suggest the use of the equation AMEn = + 3245.07 + 46.8428(EE), R² = 76%, and for meals with high mineral matter content (higher than 10%), it is suggest the equations AMEn = 4059.15 - 440.397(P), R² = 82%. To estimate values of TMEn, it is suggested for meals with high mineral matter content the equation: TMEn = 5092.57 - 115.647(MM), R² = 78%, and for those with low contents of this component, the option is the equation: TMEn = 3617.83 - 15.7988(CP) - 18.2323(EE) - 96.3884(MM) + 0.4874(GE), R² = 76%.


Sign in / Sign up

Export Citation Format

Share Document