scholarly journals Preparation of Monoclinic Pyrrhotite by Thermal Decomposition of Jarosite Residues and Its Heavy Metal Removal Performance

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Cuimin Xu ◽  
Qiaoqin Xie ◽  
Fan Xu ◽  
Yuefei Zhou ◽  
Hanlin Wang ◽  
...  

Jarosite residues produced by zinc hydrometallurgical processing are hazardous solid wastes. In this study, monoclinic pyrrhotite (M­Po) was prepared by the pyrolysis of jarosite residues in H2S atmosphere. The influence of gas speed, reaction temperature, and time was considered. The mineral phase, microstructure, and elemental valence of the solids before and after pyrolysis were analyzed using X­ray diffraction, scanning electron microscopy, and X­ray photoelectron spectroscopy, respectively. The performances of the prepared M­Po on the removal of Zn and Pb from aqueous solution were evaluated. The results show M­Po to be the sole product at the reaction temperatures of 550 to 575 °C. Most of the M­Po particles are at the nanometer scale and display xenomorphic morphology. The phase evolution process during pyrolysis is suggested as jarosite → hematite/magnetite → pyrite → pyrite+M­Po → M­Po+hexagonal pyrrhotite (H­Po) → H­Po. The formation rate, crystallinity, and surface microtexture of M­Po are controlled by reaction temperature and time. Incomplete sulfidation may produce coarse particles with core–shell (where the core is oxide and the shell is sulfide) and triple-layer (where the core is sulfate, the interlayer is oxide, and the shell is sulfide) structures. M­Po produced at 575 °C exhibits an excellent heavy metal removal ability, which has adsorption capacities of 25 mg/g for Zn and 100 mg/g for Pb at 25 °C and pH ranges from 5 to 6. This study indicates that high-temperature sulfidation is a novel and efficient method for the treatment and utilization of jarosite residues.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1508 ◽  
Author(s):  
Fernanda Lyzeth Rivera ◽  
Francisco Javier Palomares ◽  
Pilar Herrasti ◽  
Eva Mazario

Magnetite nanoparticles (Fe3O4) of 12 ± 4 nm diameter are electrochemically synthesized for the adsorption and magnetic harvesting of Cr(VI) from contaminated simulated solutions. The removal of Cr(VI) from aqueous media follows pseudo-second-order kinetics. The adsorption efficiency is evaluated in three different scenarios. In standard conditions, i.e., at room temperature; in a thermal bath working at 60 °C, where the temperature could be considered homogeneous within the solution; and finally, under magnetic induction heating, while adjusting the frequency and magnetic field used to attain the same temperature as in the bath experiments. Two benefits of using a magnetic inductor are demonstrated. First, the removal efficiency is almost doubled in comparison to that of the room temperature experiments, and it is higher by 30% compared to that of the bath setup. At the same time as the adsorption occurs, a redox reaction occurs on the surface of the nanoparticles, and Cr(VI), the predominant species in the contaminated solution, is significantly reduced to Cr(III). Through X-ray photoelectron spectroscopy, it is shown that a greater reduction effect is achieved when working in induction conditions than at room temperature. This is the first time that this synergistic effect using magnetic induction heating has been demonstrated for heavy metal decontamination of wastewater.


2020 ◽  
Vol 82 (12) ◽  
pp. 2962-2974
Author(s):  
Hua Deng ◽  
Qiuyan Li ◽  
Meijia Huang ◽  
Anyu Li ◽  
Junyu Zhang ◽  
...  

Abstract Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g−1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.


2021 ◽  
Vol 287 ◽  
pp. 112322
Author(s):  
Morteza Nazaripour ◽  
Mir Amir Mohammad Reshadi ◽  
Seyed Ahmad Mirbagheri ◽  
Mehdi Nazaripour ◽  
Alireza Bazargan

2021 ◽  
Vol 10 (1) ◽  
pp. 44-57
Author(s):  
Abdullah Al-Amin ◽  
Fahmida Parvin ◽  
Joydeep Chakraborty ◽  
Yong-Ick Kim

Sign in / Sign up

Export Citation Format

Share Document