scholarly journals Methodological Approach (In Situ and Laboratory) for the Characterisation of Late Prehistoric Rock Paintings—Penedo Gordo (NW Spain)

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 551
Author(s):  
Jose Santiago Pozo-Antonio ◽  
Beatriz Comendador Rey ◽  
Lara Alves Bacelar ◽  
Pablo Barreiro

This paper draws on the study of the prehistoric art site of Penedo Gordo (NW Spain) resulting from a collaborative interdisciplinary research. One of its primary goals was to design and put into practice a multi-analytical protocol for characterising prehistoric rock paintings, combining in situ and laboratory analytical techniques. Thus, following the archaeological assessment of the site, the panels exhibiting red paintings were analysed by colour spectrophotometry and portable Raman spectroscopy. Analytical techniques were applied to a collection of samples exhumed from the excavation that simultaneously took place on site. These included three red accretions on different substrates (compact soil, white quartzite and grey quartzite) and stone fragments representative of the outcrop’s petrographic variability, aiming to determine their mineralogical composition, texture and study the stone-paint boundaries. Moreover, colouring materials exhumed from the excavation and collected in the immediate surroundings of the rock outcrop were analysed in order to scrutinise the provenience rock art’s raw materials. Laboratory analysis consisted of stereomicroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. One of the major outcomes was the discovery of a drop of red pigment preserved in an archaeological layer associated with Late Neolithic/Copper Age material remains.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.


Clay Minerals ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 453-468 ◽  
Author(s):  
A. Aras ◽  
S. Kiliç

AbstractThe present study focused on the mineralogical and chemical characterization and firing behaviour of clays from the Lake Van region and compared them with the same characteristics established for two ancient pot sherds. Four pottery clays collected from Kutki and Kuşluk in the Kesan Valley to the south, from Kavakbaşı to the southwest and from Bardakçı village on the east coast of Lake Van were analysed by X-ray diffraction to identify mineralogical composition (bulk clays and <2 μm fractions after heating at 300–500°C and ethylene glycol solvation). Further analyses were conducted to determine the size distribution, chemical composition and physical properties of test bodies derived from these clays. The in situ weathered schist forming the primary micaceous red clays which are suitable for local pottery production are characterized by large muscovite-sericite-illite and small calcite contents. In contrast, the Bardakçı clays are dominated by large smectite contents and are only used sparingly in mixtures of local pottery production because they undergo firing shrinkage and present drying and firing flaws in the fired bodies. Firing ranges of ~800–900°C were inferred from the mineralogy and colours of the two ancient sherds from Kutki. As a result of mineralogical analysis of fired and unfired test bodies of these pottery clays and pot sherds, two different types of pastes were determined for pottery production in the Lake Van region: metamorphic and volcanic paste, the former characterized by a calcite-poor and mica-sericite-rich matrix and the latter by large smectite and small calcite contents.


2019 ◽  
Vol 30 (1) ◽  
pp. 127-141
Author(s):  
Verónica Aldazabal ◽  
Maria Reinoso ◽  
Graciela Custo ◽  
Luciana Cerchetti ◽  
Emilia B. Halac ◽  
...  

In this paper we discuss the use of mineral pigments recovered in stratigraphic position from three excavated archaeological sites (Traful Lake area, Argentina) with the aim of providing information on selection and frequency of use of these raw materials. In this region, human occupation has been recorded since 4000 BP. In order to identify the chromophoric minerals, we applied wavelength dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and X-ray diffraction techniques. Green, red, yellow ochre, and white pigments dated between 3490 and 590 BP were analyzed. The results show that different analytical techniques provide complementary information in order to identify the pigments. Green, red, and yellow samples are related to iron-based compounds. The green pigments can be associated with celadonite and the others with hematite. White samples revealed the presence of hydroxyapatite. Black dots, identified as carbon, were observed in several samples. Red pigments are always predominant, and their relative abundance increases in recent strata. Results are discussed in light of the context and previous reports of chroniclers.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


2017 ◽  
Vol 67 (328) ◽  
pp. 140 ◽  
Author(s):  
P. Koutník

The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite.


2012 ◽  
Vol 65 (4) ◽  
pp. 513-521
Author(s):  
José Manuel Rivas Mercury ◽  
Gricirene Sousa Correia ◽  
Nazaré Socorro Lemos Silva Vasconcelos ◽  
Aluísio Alves Cabral Jr. ◽  
Rômulo Simões Angélica

This work involved the characterization of clays collected in the municipalities of São Luis, Rosário, Pinheiro and Mirinzal (state of Maranhão, Brazil), based on specific mass, specific surface area, cation exchange capacity (CEC), particle size distribution, X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG-DTA) and Atterberg limits. Technological tests for ceramic applications were also carried out on compacts pressed under 20 MPa and heat-treated at 850, 950, 1050, 1150 and 1250ºC. Our results indicated that two of the clays composed of kaolinite, quartz, and anatase with high plasticity limits, have excellent properties and can be used in the whiteware industry. The other ones are red-firing clays and have a mineralogical composition of quartz, kaolin, feldspar, montmorillonite, hematite and goethite. The latter showed low and moderate values of plasticity, which makes them suitable for the production of heavy clay products.


2018 ◽  
Vol 143 ◽  
pp. 02006
Author(s):  
Daria Vasileva ◽  
Egor Protodiakonov ◽  
Anastasia Egorova ◽  
Svetlana Antsupova

Durability of hardened cement paste depends on chemical and mineralogical composition of Portland cement. The main factor for hardened cement paste is higher content of calcium aluminate and free calcium hydroxide, binding of which into water-insoluble compounds causes increase in resistance to water, frost and corrosion. The purpose of this research is to develop modifying admixtures to cement compositions based on local raw material - rock sand. Chemical and mineralogical properties of the source materials were studied using X-ray spectroscopy and X-ray diffraction analysis. Standard methods were used for defining physico-mechanical properties of sand and binder. Influence of the degree of mechanochemical activation of modifying admixture on the properties of binder and hardened cement paste made on its basis was studied. Research methods of scanning electron microscopy and spectral measurements were applied. The possibility of using admixture based on rock sand as a modifier was determined, its usage providing increase of strength, sulphate and frost resistance, which causes higher durability of cement concrete.


2013 ◽  
Vol 575-576 ◽  
pp. 527-530
Author(s):  
Yong Jie Liu ◽  
Lin Chen ◽  
Shi Quan Liu ◽  
Rui Xia Shi

MAC cementing material was in-situ synthesized with different ratios of raw materials and sintering temperatures. The raw materials include hydrated lime, magnesite and alumina. X-ray diffraction analysis indicates that the major mineral phases in the MAC are monocalcium aluminate (CA), magnesium aluminate spinel (MA) and calcium aluminate (C7A12). The relative contents of the mineral and amorphous phase were simply calculated based on the relative diffraction peaks and MgO-Al2O3-CaO ternary phase diagram. SEM and EDS analysis indicate that the MAC cementing material includes layered structured CA, long strip C7A12 and octahedral MA.


Sign in / Sign up

Export Citation Format

Share Document