Mineralogical and physicochemical characterization of selected Portuguese Mesozoic-Cenozoic muddy/clayey raw materials to be potentially used as healing clays

Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.

2012 ◽  
Vol 65 (4) ◽  
pp. 513-521
Author(s):  
José Manuel Rivas Mercury ◽  
Gricirene Sousa Correia ◽  
Nazaré Socorro Lemos Silva Vasconcelos ◽  
Aluísio Alves Cabral Jr. ◽  
Rômulo Simões Angélica

This work involved the characterization of clays collected in the municipalities of São Luis, Rosário, Pinheiro and Mirinzal (state of Maranhão, Brazil), based on specific mass, specific surface area, cation exchange capacity (CEC), particle size distribution, X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG-DTA) and Atterberg limits. Technological tests for ceramic applications were also carried out on compacts pressed under 20 MPa and heat-treated at 850, 950, 1050, 1150 and 1250ºC. Our results indicated that two of the clays composed of kaolinite, quartz, and anatase with high plasticity limits, have excellent properties and can be used in the whiteware industry. The other ones are red-firing clays and have a mineralogical composition of quartz, kaolin, feldspar, montmorillonite, hematite and goethite. The latter showed low and moderate values of plasticity, which makes them suitable for the production of heavy clay products.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.


2015 ◽  
Vol 820 ◽  
pp. 51-55
Author(s):  
I.A. Silva ◽  
I.D.S. Pereira ◽  
W.S. Cavalcanti ◽  
F.K.A. Sousa ◽  
Gelmires Araújo Neves ◽  
...  

The State of Paraíba has gained prominence in the production of raw bentonite in Brazil, where a new deposit has been found in the town of Sossego-PB, besides the deposit in the town of Boa Vista-PB. With the raise in the demand, the traditional reserves are depleting after several years of exploration, and this fact may result in a higher dependence on imported clays, thus existing a great interest in the discovery and characterization of new deposits, also guaranteeing technological improvements for the region. So, the objective of this work is to characterize the new deposits of the State of Paraíba, aiming at analyzing the characteristics the prove their classification as smectitic clays. The characterization was made through the analysis of chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), thermogravimetric analysis and thermal differential analyses (TG and DTA), cation-exchange capacity (CEC) and specific area (SA). The results prove that the studied samples presented, in their mineralogical composition, smectite, kaolinite and quartz, besides thermal and chemical behavior typical smectitic clays.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Gordana Оstojić ◽  
Dragica Lazić ◽  
Branko Škundrić ◽  
Jelena Penavin Škundrić ◽  
Slavica Sladojević ◽  
...  

From the aspect of their chemical and mineralogical composition, bauxites are very complex multicomponent raw materials. The paper presents the characterization of bauxite from several different deposits: Brazil, Milići, Čitluk and Kosovo. Chemical characteristics were determined by a combination of different analytical methods: gravimetry, potentiometric titration, atomic absorption spectroscopy (AAS) and UV-VIS spectrophotometry. Mineralogical composition was determined using X-ray diffraction and thermal analysis methods. Chemical and structural characterization is complemented by the results of scanning electron microscopy with EDX analysis. The information obtained was used for the assessment of the quality of investigated bauxites from the aspect of their application in the production of alumina.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Iván Fernando Macías-Quiroga ◽  
Gloria Inés Giraldo-Gómez ◽  
Nancy Rocío Sanabria-González

This paper presents a mineralogical and physicochemical characterization of a Colombian clay found in an area with the greatest exploitation potential of smectites and possible use as an adsorbent for the removal of chromium. The clay was characterized by using X-ray diffraction (XRD), cation exchange capacity (CEC), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TGA/DSC), and nitrogen adsorption at 77 K. The homoionized clay was used as an adsorbent for the removal of Cr(III) in an aqueous solution. The homoionized clay was modified with hexadecyltrimethylammonium bromide (HDTMA-Br), and the organoclay obtained was evaluated for the adsorption of Cr(VI) in aqueous solution. The XRD analysis showed that the clay from Armero-Guayabal is primarily constituted by smectite (48 wt%) followed by quartz mineral (21 wt%). The chemical analysis of bulk clay showed that the predominant oxides are SiO2 (55.81 wt%), Al2O3 (16.25 wt%), and Fe2O3 (7.51 wt%), and the nitrogen adsorption indicated that the bulk clay has a specific surface area of 45.1 m2/g. Homoionized clay and organoclay achieved Cr(III) and Cr(VI) removals greater than 85.05 ± 2.04% (pH between 3 and 4) and 82.93 ± 1.03% (pH between 3 and 5), respectively, proving the potential of these materials for the removal of heavy metals in an aqueous solution.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Irina Atkinson ◽  
Ion Teoreanu ◽  
Maria Zaharescu

This study aims to investigate the structure and properties of raw glazes with zirconium and boron addition for sanitary porcelain. To obtain the glazes under investigation the following raw materials were used: potassium feldspar, kaolin, wollastonite, quartz, colemanite, ZnO and ZrO2. The glazes were prepared by traditional ceramic method and the resulted suspension was applied on the green ceramic substrate and thermally treated in an electrical furnace with a treatment time of 1 hour at the maximum temperature of 12500C. The microstructure of the glazes and the glaze-ceramic substrate interfaces were evaluated by SEM and EDAX microanalysis, which showed the presence of zircon micro crystals. X-Ray diffraction revealed that the mineralogical composition of the glazes consisted of quartz, zircon, feldspar and colemanite phases. The correlation between the composition and properties of the glazes was established by hot stage microscopy and dilatometry (melt viscosity, contact angle and thermal expansion coefficient). The colour characteristics were estimated in the HunterLab system (L* C* h*, remission spectra).


Cerâmica ◽  
2016 ◽  
Vol 62 (363) ◽  
pp. 272-277 ◽  
Author(s):  
C. I. R. de Oliveira ◽  
M. C. G. Rocha ◽  
A. L. N. da Silva ◽  
L. C. Bertolino

Abstract Clays of different composition have been used in the development of polymer nanocomposites. The utilization of bentonite clays of the State of Paraíba, Brazil, has been emphasized mainly due to their availability. However, these bentonite deposits are becoming exhausted after several years of exploitation. Thus, the aim of this work was to characterize bentonite clays recently discovered in the municipality of Cubati, Paraíba. The samples underwent a particle size classification step and were characterized by granulometric analysis by laser diffraction, X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and cation exchange capacity. The results of particle size distribution showed that the clay samples have similar physical characteristics to bentonite clays of Boa Vista, Paraíba. Results of X-ray diffraction indicated that the mineralogical composition of the samples consisted of montmorillonite, kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the samples are polycationic bentonite clays and have predominantly different exchangeable cations similar to those seen in South American bentonites.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 563-577 ◽  
Author(s):  
A. Nzeukou Nzeugang ◽  
M. El Ouahabi ◽  
B. Aziwo ◽  
J.R. Mache ◽  
H.S. Mefire Mounton ◽  
...  

ABSTRACTA kaolin deposit from Mankon (northwest Cameroon) was prospected and studied for potential applications in ceramics. Six samples were investigated with X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM) to determine the mineralogical composition and with X-ray fluorescence (XRF) to determine the chemical composition and properties for ceramic applications. The main minerals in the clays are kaolinite/halloysite and anatase associated with alunite, illite, gibbsite and maghemite. The kaolin samples have abundant organic matter (4–10%) and low absorption of methylene blue (0.2–2.5 meq/100 g), while SiO2 (33.28–56.31%) and Al2O3 (19.26–35.87%) are major oxides. The particle-size distribution derived from sieving and the hydrometer method indicates that 12–38% of the samples are in the <2 μm clay fraction. The clays have low to moderate plasticity (7–21%). One sample with K-feldspar and plagioclase displays the necessary properties for red ceramic products. SEM confirmed the occurence of halloysite in sample M9. The high kaolinite/halloysite content (64–97%), associated with low Fe2O3 content (0.5–1.4%) demonstrates that five samples are suitable raw materials for white firing industrial kaolin.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 544
Author(s):  
Giuditta Guerrini ◽  
Antonio Vivi ◽  
Sabrina Gioria ◽  
Jessica Ponti ◽  
Davide Magrì ◽  
...  

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum–ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen–adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.


2012 ◽  
Vol 510 ◽  
pp. 757-761 ◽  
Author(s):  
Shu’e Duan ◽  
Yun Hui Zhai ◽  
Ying Juan Qu

In this paper a novel colorless and salt-tolerant silver-histidine complex doped montmorillonite (Na-MMT) antibacterial agent (SHMMT) power was synthesized by ion exchange reaction using silver-histidine complex ion [Ag (his)] + as precursor, and characterized by atomic absorption spectrophotometer (AAS) and power X-ray diffraction (XRD). The antibacterial activities against Pseudoalteromonas carrageenovora were examined by a modified broth dilution test and the plate counting method. The salt-tolerant property was determined by the antibacterial activities of the sea water soaked SHMMT. The results showed that the Ag loading amount of SHMMT powder reached 1.7mmol/g, far more than the cationic exchange capacity (CEC) of Na-MMT. SHMMT powder had high bacterial activity eventhough it was soaked in the sea water for 30 days. 1


Sign in / Sign up

Export Citation Format

Share Document