scholarly journals Recycling of Spent Reverse Osmosis Membranes for Second Use in the Clarification of Wet-Process Phosphoric Acid

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 637
Author(s):  
Khaoula Khaless ◽  
Brahim Achiou ◽  
Rachid Boulif ◽  
Rachid Benhida

Various techniques have been used to “clean-up” wet-process phosphoric acid such as precipitation, flotation and adsorption. To address the potential of membrane processes in the phosphoric acid clarification process, this study explores the benefits of membrane techniques as a green separation technique for phosphoric acid clarification in an eco-efficient way through the use of recycling spent reverse osmosis membrane. Regenerated membrane was used to study the phosphoric acid clarification at a laboratory scale. They were immersed in an oxidizer for at most seven days. The samples were characterized systematically before immersion in an oxidant media. In this study, the potential to regenerate spent membranes and application of this media to clarify the 29% P2O5 phosphoric acid was demonstrated. This study shows, through experiments, that the reverse osmosis (RO) membranes could achieve a rejection of 70% and 61% for suspended solid and organic matter, respectively. These promising results will pave the way for implementation of these membranes in phosphoric acid treatment. Moreover, besides being economically advantageous, the use of the spent membrane is likely an environmentally friendly route (no waste, no organic solvent and effluent to be regenerated later on).

Author(s):  
Khaoula Khaless ◽  
Brahim Achiou ◽  
Rachid Boulif ◽  
Rachid Benhida

Various techniques have been used to “clean-up” industrial phosphoric acid: precipitation, flotation, activated charcoal or clay treatment. To address membrane processes potential in phosphoric acid clarification process, this study explores the advantage of membrane techniques as new route for phosphoric acid clarification in an eco-efficient way through the use of “regenerated spent membrane”. Regeneration of the spent membranes was performed on of 0.15 m2 active area regeneration. These membrane samples were used to study the phosphoric acid clarification at a laboratory scale. They were immersed in an oxidizer for at most seven days. The samples were characterized systematically before immersion in an oxidant media. In this study, the potential to regenerate spent membranes and application of this media to clarify the 29% P2O5 phosphoric acid was demonstrated. This study shows, by tests that the reverse osmosis (RO) membranes achieve an abatement of 70% and 65% for solids and organic materials, respectively. These positive results will pave the way for implementing these membranes phosphoric acid treatment process. Moreover, besides being economically advantageous, the use of the spent membrane is likely an environmentally friendly route (no waste, no organic solvent and effluent to be regenerated later on).


2015 ◽  
Vol 737 ◽  
pp. 661-663
Author(s):  
Xiao Ming Sun ◽  
Jing Yang Liu ◽  
Qi Qiao ◽  
Yue Zhang ◽  
Na Zhang ◽  
...  

Reverse osmosis membrane is usually used to desalination. With the development of membrane materials and technology, the performance of reverse osmosis membrane is improved continuously, and the interception rate of organic matter is higher, the separation rate of the organic matter is obviously improved. The research progress and application status of separating organics in aqueous solution by reverse osmosis membrane is presented in this paper. The future research direction and application of reverse osmosis membrane for separating organics from aqueous solution were also analyzed and prospected.


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


2021 ◽  
Vol 196 ◽  
pp. 117006 ◽  
Author(s):  
Nicholas W. Bristow ◽  
Sarah J. Vogt ◽  
Szilard S. Bucs ◽  
Johannes S. Vrouwenvelder ◽  
Michael L. Johns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document