scholarly journals Recycling of Spent Reverse Osmosis Membranes for the Second Use in Clarification of Wet-Process Phosphoric Acid

Author(s):  
Khaoula Khaless ◽  
Brahim Achiou ◽  
Rachid Boulif ◽  
Rachid Benhida

Various techniques have been used to “clean-up” industrial phosphoric acid: precipitation, flotation, activated charcoal or clay treatment. To address membrane processes potential in phosphoric acid clarification process, this study explores the advantage of membrane techniques as new route for phosphoric acid clarification in an eco-efficient way through the use of “regenerated spent membrane”. Regeneration of the spent membranes was performed on of 0.15 m2 active area regeneration. These membrane samples were used to study the phosphoric acid clarification at a laboratory scale. They were immersed in an oxidizer for at most seven days. The samples were characterized systematically before immersion in an oxidant media. In this study, the potential to regenerate spent membranes and application of this media to clarify the 29% P2O5 phosphoric acid was demonstrated. This study shows, by tests that the reverse osmosis (RO) membranes achieve an abatement of 70% and 65% for solids and organic materials, respectively. These positive results will pave the way for implementing these membranes phosphoric acid treatment process. Moreover, besides being economically advantageous, the use of the spent membrane is likely an environmentally friendly route (no waste, no organic solvent and effluent to be regenerated later on).

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 637
Author(s):  
Khaoula Khaless ◽  
Brahim Achiou ◽  
Rachid Boulif ◽  
Rachid Benhida

Various techniques have been used to “clean-up” wet-process phosphoric acid such as precipitation, flotation and adsorption. To address the potential of membrane processes in the phosphoric acid clarification process, this study explores the benefits of membrane techniques as a green separation technique for phosphoric acid clarification in an eco-efficient way through the use of recycling spent reverse osmosis membrane. Regenerated membrane was used to study the phosphoric acid clarification at a laboratory scale. They were immersed in an oxidizer for at most seven days. The samples were characterized systematically before immersion in an oxidant media. In this study, the potential to regenerate spent membranes and application of this media to clarify the 29% P2O5 phosphoric acid was demonstrated. This study shows, through experiments, that the reverse osmosis (RO) membranes could achieve a rejection of 70% and 61% for suspended solid and organic matter, respectively. These promising results will pave the way for implementation of these membranes in phosphoric acid treatment. Moreover, besides being economically advantageous, the use of the spent membrane is likely an environmentally friendly route (no waste, no organic solvent and effluent to be regenerated later on).


Author(s):  
Baltabekova Zhazira ◽  
Kenzhaliyev Bagdaulet ◽  
Lokhova Nina ◽  
Kassymzhanov Kaisar

When apatites and phosphorites are processed, up to 30% of rare earth metals are converted into wet-process phosphoric acid. Wet-process phosphoric acid from the phosphorite treatment process differs from apatite one by impurity composition, i.e. the iron content is by 3.5 times, and calcium is by 5.0 times more. The complex composition of the wet-process phosphoric acid from the phosphorite treatment process requires additional researches to select optimal ion exchangers and technological parameters of sorption. Various aspects of sorption have been studied to select the optimal ion exchangers and technological parameters, and technological modes for desorption of rare earth metals from a cation exchanger to obtain a concentrate of rare earth metals have been completed. The method enables to extract rare earth metals without changing the composition of commercial wet-process phosphoric acid directly in the production process of the enterprises engaged in the phosphorite treatment process.


2019 ◽  
Vol 118 ◽  
pp. 04009
Author(s):  
Yuan Li ◽  
Jie Liu ◽  
Yibiao Yu ◽  
Hao Zhu ◽  
Zheng Shen ◽  
...  

A more detailed occurrence features of organic matters in the printing and dyeing wastewater, based on its particle size distribution (PSD) and along with a wastewater treatment process, was conducted to provide a support for advanced treatment. Results suggested that, (1) In the dyeing wastewater, the occurrence characteristic of COD was: soluble>supra colloidal>colloidal>settleable; However, for protein, the supra colloidal was dominant, followed by the soluble. The feature of the polysaccharide was consistent with COD’s. In the wastewater, 29.66% of COD could be attributed to proteins and 3.45% of the COD could be attributed to polysaccharides. (2) The relationship among the forms of COD in the primary sedimentation tank, aerobic tank, secondary sedimentation tank, and reverse osmosis-treated concentrated effluent was consistent, that was: soluble>colloidal>supra colloidal>settleable. (3) In the primary sedimentation tank, the settleable COD was almost completely removed; In the aerobic tank, the residual super colloidal COD was not much; After MBR-RO treatment, the COD in the reverse osmosis concentrated water was almost dissolved and only a little presented in other forms.


1954 ◽  
Vol 26 (6) ◽  
pp. 1060-1061 ◽  
Author(s):  
J. A. Brabson ◽  
W. D. Wilhide

2010 ◽  
Vol 6 (4) ◽  
pp. 1661-1670 ◽  
Author(s):  
Jin-Woo Park ◽  
Youn-Jeong Kim ◽  
Je-Hee Jang ◽  
Tae-Geon Kwon ◽  
Yong-Chul Bae ◽  
...  

2013 ◽  
Vol 20 (0) ◽  
pp. 183-195 ◽  
Author(s):  
Xuhong JIA ◽  
Jun LI ◽  
Yang JIN ◽  
Jianhong LUO ◽  
Baoming WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document