scholarly journals Diffraction Features from (101¯4) Calcite Twins Mimicking Crystallographic Ordering

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 720
Author(s):  
Péter Németh

During phase transitions the ordering of cations and/or anions along specific crystallographic directions can take place. As a result, extra reflections may occur in diffraction patterns, which can indicate cell doubling and the reduction of the crystallographic symmetry. However, similar features may also arise from twinning. Here the nanostructures of a glendonite, a calcite (CaCO3) pseudomorph after ikaite (CaCO3·6H2O), from Victoria Cave (Russia) were studied using transmission electron microscopy (TEM). This paper demonstrates the occurrence of extra reflections at positions halfway between the Bragg reflections of calcite in 0kl electron diffraction patterns and the doubling of d104 spacings (corresponding to 2∙3.03 Å) in high-resolution TEM images. Interestingly, these diffraction features match with the so-called carbonate c-type reflections, which are associated with Mg and Ca ordering, a phenomenon that cannot occur in pure calcite. TEM and crystallographic analysis suggests that, in fact, (101¯4) calcite twins and the orientation change of CO3 groups across the twin interface are responsible for the extra reflections.

2000 ◽  
Vol 33 (1) ◽  
pp. 10-25 ◽  
Author(s):  
Stefan Zaefferer

A new computer program for on-line crystallographic analysis in transmission electron microscopy (TEM) is presented. The program is based on the fast on-line determination of single-crystal orientations from Kikuchi and spot patterns. Spot patterns, which are particularly useful in the case of highly deformed metals, are analyzed by a new digital image processing procedure. This procedure improves the precision and ease of the orientation measurement. The program permits the on-line measurement of glide systems characterized by the Burgers vector and the crystallographic line direction of dislocations and their glide planes. The determination of twin systems, based on the misorientation calculation for any crystal structure, is included as well. The possibility of determining the foil thickness permits the complete crystallographic characterization of interfaces. Finally, the program facilitates the discrimination of phases and includes the fit of the lattice parametersa,bandcfrom diffraction patterns. The new procedures are described in detail. Application examples are given for all functions.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
Ryuichiro Oshima ◽  
Shoichiro Honda ◽  
Tetsuo Tanabe

In order to examine the origin of extra diffraction spots and streaks observed in selected area diffraction patterns of deuterium irradiated silicon, systematic diffraction experiments have been carried out by using parallel beam illumination.Disc specimens 3mm in diameter and 0.5mm thick were prepared from a float zone silicon single crystal(B doped, 7kΩm), and were chemically thinned in a mixed solution of nitric acid and hydrogen fluoride to make a small hole at the center for transmission electron microscopy. The pre-thinned samples were irradiated with deuterium ions at temperatures between 300-673K at 20keV to a dose of 1022ions/m2, and induced lattice defects were examined under a JEOL 200CX electron microscope operated at 160kV.No indication of formation of amorphous was obtained in the present experiments. Figure 1 shows an example of defects induced by irradiation at 300K with a dose of 2xl021ions/m2. A large number of defect clusters are seen in the micrograph.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Author(s):  
K. Seshan ◽  
H.-R. Wenk

Asbestos fibre texture occurs in various mineral groups (e.g. chrysotile, crocidolite, tremolite, grunerite, tourmaline) and it has been established that at least chrysotile is carcinogenic. We are investigating various aspects of the asbestos structure, with transmission electron microscopy (TEM) (1) in order to develop methods for unequivocal asbestos identification using minute samples and also to determine defects responsible for the fibre structure in these minerals which often occur as large, we 11-developed single crystals.In order to do this, we have started by investigating clinoamphibole asbestos such as tremolite Ca2Mg5[Si8O22] (OH, F)2 and crocidolite Na2 (Mg, Al, Fe3+, Fe2+) (Si8O22) (OH, F )2 , from California localities. In crocidoli te - asbestos we observed a high density of very narrow microtwins parallel to the fibre axis [001] (Fig. 1). They are often only 50-100Å wide. Diffraction patterns display the typical twin arrangement of spots and although preliminary contrast experiments are not yet conclusive the twin plane appears to be (100).


2011 ◽  
Vol 675-677 ◽  
pp. 247-250 ◽  
Author(s):  
Yoshio Tanita ◽  
Daiji Matsui ◽  
Hiroshi Fukushima

Micro- and nano-structures of the Cr-Mo electroplated layers were studied mainly by Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and Positron Annihilation Lifetime Spectroscopy (PALS). These electroplated layers which were deposited in Cr-Mo electrolyte containing an organic sulfonic acid, showed surface structures having severe ups and downs of small crystal grains. Both selected area diffraction and dark-field image of TEM confirmed the presence of very small crystal grains of less than 50 nm. These small crystal grains exhibited textured structure when the electrolyte contained an organic sulfonic catalyst. PALS results indicated the presence of high density nano-size voids, and HRTEM analysis confirmed the presence of high density voids of 1 nm to 2 nm in diameter. Size and density of these nano-voids increased with the amount of catalyst in the electrolyte.


2009 ◽  
Vol 24 (1) ◽  
pp. 192-197 ◽  
Author(s):  
G.M. Cheng ◽  
Y.X. Tian ◽  
L.L. He

The orientation relationship (OR) and the interfacial structure between Nb solid solution (Nbss) precipitates and α-Nb5Si3 intermetallics have been investigated by transmission electron microscopy (TEM). The OR between Nbss and α-Nb5Si3 was determined by selected-area electron diffraction analyses as (222)Nb//(002)α and . High-resolution TEM images of the Nbss/α-Nb5Si3 interface were presented. Steps existed at the interface that acted as centers of stress concentration and released the distortion of lattices to decrease the interfacial energy. In addition, the interfacial models were proposed based on the observed OR to describe the atomic matching of the interface. The distribution of alloying elements at the Nbss/α-Nb5Si3 interface has also been investigated, and Hf was enriched at the interface to strengthen the grain boundary.


2017 ◽  
Vol 50 (3) ◽  
pp. 795-804 ◽  
Author(s):  
Jiangkun Fan ◽  
Jinshan Li ◽  
Yudong Zhang ◽  
Hongchao Kou ◽  
Jaafar Ghanbaja ◽  
...  

For the β phase of Ti-5553-type metastable β-Ti alloys, striations in transmission electron microscopy (TEM) bright- and dark-field images have been frequently observed but their origin has not been sufficiently investigated. In the present work, this phenomenon is studied in depth from the macroscopic scale by neutron diffraction to the atomic scale by high-resolution TEM. The results reveal that the β phase contains homogeneously distributed modulated structures, intermediate between that of the β phase (cubic) and that of the α phase or the ω phase (hexagonal), giving rise to the appearance of additional diffraction spots at 1/2, 1/3 and 2/3 β diffraction positions. The intermediate structure between β and α is formed by the atomic displacements on each second {110}βplane in the \langle 1{\overline 1}0\rangle_{\beta} direction, whereas that between β and ω is formed by atomic displacements on each second and third {112}βplane in the opposite \langle 11{\overline 1}\rangle_{\beta } direction. Because of these atomic displacements, the {110}βand {112}βplanes become faulted, resulting in the streaking of β diffraction spots and the formation of extinction fringes in TEM bright- and dark-field images, the commonly observed striations. The present work reveals the origin of the striations and the intrinsic correlation with the additional electron reflections of the β phase.


1997 ◽  
Vol 12 (7) ◽  
pp. 1872-1884 ◽  
Author(s):  
W. Sinkler ◽  
C. Michaelsen ◽  
R. Bormann

In inverse melting, a supersaturated crystalline phase transforms polymorphously under heat treatment to the amorphous state. Inverse melting of body-centered cubic (bcc) Nb45Cr55 is studied using transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The crystalline to amorphous transformation is heterogeneous, initiating at the bcc grain boundaries. HRTEM reveals 2–3 nm domains with medium range order (MRO) in the amorphous phase. Preferred orientation of MRO domains is found on a scale corresponding to the precursor bcc grain size. Using HRTEM and calorimetry, MRO development in cosputtered Nb45Cr55 films is characterized and compared to that in the amorphous phase produced by inverse melting.


1985 ◽  
Vol 48 ◽  
Author(s):  
Howard T. Sawhill ◽  
Linn W. Hobbs

ABSTRACTNi/NiO interface structures were investigated using TEM, and the observed structures were compared with current heterophase interface models. Relative magnitudes of Ni/NiO interfacial energies were obtained from measurements of dihedral angles at triple grain junctions between Ni and NiO grains. Extra reflections in diffraction patterns from oxide grains adjacent to the Ni/NiO interface were compared with kinematical structure factor calculations for several proposed structures.


Sign in / Sign up

Export Citation Format

Share Document