scholarly journals Basalt from the Extinct Spreading Center in the West Philippine Basin: New Geochemical Results and Their Petrologic and Tectonic Implications

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1277
Author(s):  
Zhengxin Yin ◽  
Weiping Wang ◽  
Liang Chen ◽  
Zhengyuan Li ◽  
Qiang Liu ◽  
...  

We present geological, bulk-rock geochemical and Sr–Nd–Hf isotopic data for mafic rocks from the West Philippine Basin (WPB). These mafic rocks comprise pillow basalts characterized by a vesicular structure. The mid-ocean ridge basalt (MORB)-normalized trace element patterns of basalts from the study area display depletions in Nb. In addition, the chondrite-normalized lanthanide patterns of basalts from the WPB are characterized by significant depletions in the light lanthanides and nearly flat Eu to Lu segments. The investigated rocks have initial 87Sr/86Sr ratios (87Sr/86Sr(i)) of 0.703339–0.703455 and high εNd(t) values (8.0 to 8.7). Furthermore, basalts from the WPB have 176Hf/177Hf ratios that range from 0.28318 to 0.28321 and high εHf(t) from 15.2 to 16.3. Semi-quantitative modeling demonstrates that the parental melts of basalts from the study area were derived by ~20% adiabatic decompression melting of a rising spinel-bearing peridotite source. The Sr–Nd–Hf isotopic compositions of basalts from the WPB indicate that their parental magmas were derived from an upper mantle reservoir possessing the so-called Indian-type isotopic anomaly. Interpretation of the isotopic data suggests that the inferred mantle source was most likely influenced by minor inputs of a sediment melt derived from a downgoing lithospheric slab. Collectively, the petrographic and geochemical characteristics of basalts from the study area are analogous to those of mafic rocks with a back-arc basin (BAB)-like affinity. As such, the petrogenesis of basalts from the WPB can be linked to upwelling of an Indian-type mantle source due to lithospheric slab subduction that was followed by back-arc spreading.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-24
Author(s):  
Long Yuan ◽  
Quanshu Yan ◽  
Yanguang Liu ◽  
Shiying Wu ◽  
Ruirui Wang ◽  
...  

Abstract Since the early Cenozoic, the West Philippine Basin (WPB) and the whole Philippine Sea Plate (PSP) has undergone a complex geological evolution. In this study, we presented K-Ar ages, in situ trace element, and major element compositions of minerals of basalts collected from the Benham Rise and the Central Basin Fault (CBF) in the WPB, to constrain their magmatic process and regional geological evolution. Olivine phenocrysts and microlites in the alkali basalts (20.9 Ma) from the Benham Rise have forsterite (Fo) contents of 56.90%–76.10% and 53.13%-66.41%, respectively. The clinopyroxenes in the tholeiites (29.1 Ma) from the CBF is predominantly diopside and augite, and it is depleted in light rare earth elements (LREEs) (LaN/YbN=0.13–3.40) and large-ion lithophile elements (LILEs). The plagioclases in the basalts from both of the Benham Rise and the CBF are predominantly labradorite and andesine, with a minor amount of bytownite, and it is enriched in LREEs, Ba, Sr, and Pb and exhibits strong positive Eu anomalies. However, there exist obvious differences in plagioclase compositions between these two tectonic sites. The source lithology of the Benham Rise basaltic rocks could be garnet pyroxenite, and yet that of the CBF could be spinel-lherzolite. The calculated mantle potential temperature beneath the Benham Rise is 1439°C–1473°C, which is significantly higher than that beneath the CBF (1345°C–1381°C), suggesting there existed thermal anomaly beneath the Rise during basaltic magmatism. This study also calculated the temperature and pressure of the clinopyroxenes and plagioclases, which have been used to indicate magmatic processes. Finally, we suggest that the Benham Rise basaltic rocks may be related to a mantle plume (e.g., the Oki-Daito mantle plume), and the CBF was once located in a back-arc spreading center behind an active subduction zone. The extinction of the Oki-Daito mantle plume activity might be at about 20.9 Ma, and cessation of the back-arc spreading of WPB was at about 29.1 Ma or younger.


2011 ◽  
Vol 48 (2) ◽  
pp. 161-185 ◽  
Author(s):  
Thomas E. Krogh ◽  
Sandra L. Kamo ◽  
Thomas B. Hanley ◽  
David F. Hess ◽  
Peter S. Dahl ◽  
...  

The Middle Mountain Metamorphic Domain of the Montana Metasedimentary Terrane, northwestern Wyoming Craton, within the northwestern Tobacco Root Mountains, mainly comprises migmatized tonalitic gneiss interlayered with amphibolitic (hornblende) gneiss, both of which are cut by metamorphosed mafic rocks. Together, these gneisses are defined as Middle Mountain Gneiss. Archean tonalitic gneiss from west of, and amphibolitic gneiss from east of, the Bismark Fault give, from chemically and air-abraded zircon grains, U–Pb ID–TIMS ages of 3325.5 ± 1.7 and 3340 Ma, respectively. These results reflect primary magmatic ages and show that the Middle Mountain Gneiss extends into the northern area of the Central Fault Block, between the Bismark and Mammoth faults. Older crustal processes in the tonalitic gneiss are evidenced by inherited grains, the oldest of which is >3460 Ma. A metabasite hosted in tonalitic gneiss in the Bismark Fault selvage zone yields a zircon age of 2468 Ma, which is interpreted as the time of metamorphism. This date and other ca. 2470 Ma dates known in the region reflect a series of thermotectonic events designated here as the Beaverhead – Tobacco Root Orogeny. Geochemical evidence in the Central Fault Block metabasites suggests that their >2470 Ma precursors evolved in a back-arc – arc-rift setting, whereas their equivalents west of the Bismark Fault were largely mid-ocean ridge basalt-related tholeiites and east of the Central Fault Block were back-arc tholeiites showing some continental affinity. The metabasite was metamorphosed, deformed, and intruded by pegmatite at 1756 Ma during the Big Sky Orogeny. This orogenic event also produced new zircon growth in Archean tonalitic gneiss. Monazite with an age of 75 Ma, found at one location, reflects nearby intrusion of the Cretaceous Tobacco Root Batholith.


Terra Nova ◽  
2008 ◽  
Vol 20 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Anne Deschamps ◽  
Ryuichi Shinjo ◽  
Takeshi Matsumoto ◽  
Chao-Shing Lee ◽  
Serge E. Lallemand ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 466 ◽  
Author(s):  
Peng Yang ◽  
Qiangtai Huang ◽  
Renjie Zhou ◽  
Argyrios Kapsiotis ◽  
Bin Xia ◽  
...  

The Bangong-Nujiang Suture Zone (BNSZ) in central Tibet hosts a series of dismembered Jurassic ophiolites that are widely considered as remnants of the vanished Meso-Tethys Ocean. In this study we present new compositional, isotopic, and geochronological data from anorthosites and gabbros of the Dongco and Lanong ophiolites in order to test several hypotheses about the nature of subduction in the Bangong-Nujiang Tethys Ocean (BNTO) during the Mesozoic era. Uranium–Pb dating of magmatic zircons separated from the Dongco anorthosites yielded an (average) age of 169.0 ± 3.7 Ma. Zircons separated from the Lanong anorthosites and gabbros yielded U–Pb ages of 166.8 ± 0.9 Ma and 167.3 ± 1.1 Ma, respectively. Zircons separated from the Dongco and Lanong anorthosites have positive εHf(t) values (5.62–15.94 and 10.37–14.95, respectively). The Dongco anorthosites have moderate initial 87Sr/86Sr (0.703477–0.704144) and high εNd(t) (+6.50 to +7.91). The Lanong anorthosites have high (87Sr/86Sr)i (0.706058–0.712952) and εNd(t) in the range of −1.56 to +2.02. Furthermore, the Lanong gabbros have high (87Sr/86Sr)i (0.705826–0.706613) and εNd(t) in the range of −0.79 to +4.20. Most gabbros from Dongco and a few gabbros from Lanong show normal mid-ocean ridge basalt (N-MORB)-like primitive mantle (PM)-normalized multi-element patterns. In contrast, most gabbros from Lanong show U-shaped chondrite-normalized rare earth element (REE) profiles. The investigated gabbros are characterized by wide ranges of δEu {(Eu)N/[(Sm)N*(Gd)N]1/2} values (0.83–2.53), indicating that some of them are cumulative rocks. The trace element contents of all anorthosite samples imply that their composition was controlled by cumulative processes. The geochemical and isotopic compositions of the non-cumulative gabbros from Dongco (δEu: 0.95–1.04) and Lanong (δEu: 0.83–1.03) indicate that their parental melts were derived from melting of heterogeneously depleted, juvenile mantle reservoirs. These rocks have arc-related affinities, indicating that their mantle sources were influenced by minor inputs of subducted lithospheric components. Our preferred hypothesis for the origin of the non-cumulative gabbros from Dongco is that they were formed in a transient back-arc basin (BAB) setting in the middle-western segment of the BNTO, whereas our preferred scenario about the origin of the non-cumulative gabbros from Lanong is that they were generated in a forearc setting in the middle part of the BNTO. We conclude that both geotectonic settings were developed in response to the northward subduction of the BNTO during the Middle Jurassic.


2021 ◽  
Author(s):  
Fernanda Torres Garcia ◽  
Mauricio Calderón ◽  
Leonardo Fadel Cury ◽  
Thomas Theye ◽  
Joachim Opitz ◽  
...  

<p>During the Upper Jurassic-Lower Cretaceous times the western margin of Gondwana in southern Patagonia experienced extreme lithospheric extension and generation of rift and marginal back-arc basins. The ophiolitic complexes of the Rocas Verdes basin comprises incomplete ophiolite pseudostratigraphy lacking ultramafic rocks. The Tortuga Ophiolitic Complex, the southernmost seafloor remnant of the Rocas Verdes basin, record the most advanced evolutionary stage of the back-arc basin evolution in a mid-ocean ridge-type setting. The base of the Tortuga Complex consists of massive and layered gabbros, most of which are two pyroxene and olivine gabbros, leucogabbros, and clinopyroxene troctolites intruded by dikes of basalt and diabase with chilled margins. We present new major and trace element composition of clinopyroxene from the gabbros and sheeted dikes complexes to assess the geochemical affinity of parental basaltic magmas. Clinopyroxene in gabbros is mostly augite and have Al contents of 0.06-0.14 a.p.f.u. and Mg# of 80-92. Clinopyroxene in dolerites in the sheeted dike unit (augite and diopside) have Al content of 0.11-0.12 a.p.f.u. and Mg# of 85-92. Some immobile trace elements (e.g. Zr, Ti, Y) are sensitive to the degree of partial melting and mantle source composition, and can be used as a proxy for distinguishing tectonic environments. The Ti+Cr vs. Ca diagram, coupled with moderate-high TiO<sub>2</sub> content of clinopyroxene (0.4-1.4 wt.%) suggests their generation in mid-oceanic ridge-type environment (cf. Beccaluva et al., 1989).  The high Ti/Zr ratios (of ~4-11) coupled with low Zr contents (~0.2-1.1) are expected for higher degrees of partial melting or for melting of more depleted mantle sources. Conversely, low Zr/Y ratios (0.05-0.13) plot between the range of arc basalts. Chondrite-normalized REE patterns in clinopyroxene display a strong depletion of LREE compared to HREE and have an almost flat pattern in the MREE to HREE with a positive Eu (Eu*= 0.9-1.1) anomaly, indicating that clinopyroxene crystallized from a strongly depleted mid-ocean-ridge-type basalt, formed by extensive fractional melting of the mantle source and/or fractional crystallization and accumulation of anhydrous phases. The general trend of the incompatible trace elements patterns exhibit depletion in LILEs, minor HFSEs depletion, positive anomaly of Rb and negative anomalies in Ba, Zr, Ti and Nb, consistent with their generation from a refractory mantle source barely influenced by subduction components derived from the oceanic slab. This agrees with basalt generation in a back-arc basin located far away from the convergent margin. This study was supported by the Fondecyt grant 1161818 and the Anillo Project ACT-105.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Ching Yeh ◽  
Jing-Yi Lin ◽  
Shu-Kun Hsu ◽  
Ching-Hui Tsai ◽  
Ching-Min Chang

AbstractThe West Philippine Basin (WPB) has started opening at ~ 58 Ma and ceased spreading at ~ 33 Ma, developing a fast spreading (~ 44 mm/yr half-spreading rate) magmatic episode between 58 and 41 Ma and the second amagmatic episode between 41 and 33 Ma. The occurrence of the first stage of spreading is closely related to the Oki-Daito mantle plume and related Benham Rise (BR) and Urdaneta Plateau (UP) activity. To the east of the Luzon–Okinawa Fracture Zone (LOFZ), BR was the most active volcanism from 48 to 41 Ma. The geomagnetic ages on both sides of the LOFZ have been determined; however, their causal relationship and evolution in the WPB remain unclear. In this study, we performed integrated analyses of multichannel seismic data and swath bathymetry data for the area to the west of the LOFZ. To the west of the LOFZ, the Gagua Rise (GR), is identified by a high residual free-air gravity anomaly, volcanic seamount chains and an overlapping spreading center. The GR is located at magnetic isochrons C20/C22 (50 to 44 Ma) and shows a thick oceanic crust of at least 12.7 km. We first propose an oceanic plateau named Great Benham Rise (GBR) which includes GR, UP and BR. We infer that the GR was a portion of the GBR since ~ 49 Ma and was separated from the GBR at ~ 41 Ma by the right-lateral LOFZ motion. Later, the relict GBR magmatism only continued in the area to the east of the LOFZ. Overall, the GBR dominates the spreading history of the WPB.


2021 ◽  
Author(s):  
Qingbin Guan ◽  
Yongjiang Liu ◽  
Franz Neubauer ◽  
Sanzhong Li ◽  
Johann Genser ◽  
...  

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Shuang-Shuang Chen ◽  
Tong Hou ◽  
Jia-Qi Liu ◽  
Zhao-Chong Zhang

Shikoku Basin is unique as being located within a trench-ridge-trench triple junction. Here, we report mineral compositions, major, trace-element, and Sr-Nd-Pb isotopic compositions of bulk-rocks from Sites C0012 (>18.9 Ma) and 1173 (13–15 Ma) of the Shikoku Basin. Samples from Sites C0012 and 1173 are tholeiitic in composition and display relative depletion in light rare earth elements (REEs) and enrichment in heavy REEs, generally similar to normal mid-ocean ridge basalts (N-MORB). Specifically, Site C0012 samples display more pronounced positive anomalies in Rb, Ba, K, Pb and Sr, and negative anomalies in Th, U, Nb, and Ta, as well as negative Nb relative to La and Th. Site 1173 basalts have relatively uniform Sr-Nd-Pb isotopic compositions, close to the end member of depleted mantle, while Site C0012 samples show slightly enriched Sr-Nd-Pb isotopic signature, indicating a possible involvement of enriched mantle 1 (EM1) and EM2 sources, which could be attributed to the metasomatism of the fluids released from the dehydrated subduction slab, but with the little involvement of subducted slab-derived sedimentary component. Additionally, the Shikoku Basin record the formation of the back-arc basin was a mantle conversion process from an island arc to a typical MORB. The formation of the Shikoku Basin is different from that of the adjacent Japan Sea and Parece Vela Basin, mainly in terms of the metasomatized subduction-related components, the nature of mantle source, and partial melting processes.


Sign in / Sign up

Export Citation Format

Share Document