scholarly journals Dritsite, Li2Al4(OH)12Cl2·3H2O, a New Gibbsite-Based Hydrotalcite Supergroup Mineral

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 492 ◽  
Author(s):  
Elena S. Zhitova ◽  
Igor V. Pekov ◽  
Ilya I. Chaikovskiy ◽  
Elena P. Chirkova ◽  
Vasiliy O. Yapaskurt ◽  
...  

Dritsite, ideally Li2Al4(OH)12Cl2·3H2O, is a new hydrotalcite supergroup mineral formed as a result of diagenesis in the halite−carnallite rock of the Verkhnekamskoe salt deposit, Perm Krai, Russia. Dritsite forms single lamellar or tabular hexagonal crystals up to 0.25 mm across. The mineral is transparent and colourless, with perfect cleavage on {001}. The chemical composition of dritsite (wt. %; by combination of electron microprobe and ICP−MS; H2O calculated by structure refinement) is: Li2O 6.6, Al2O3 45.42, SiO2 0.11, Cl 14.33, SO3 0.21, H2Ocalc. 34.86, O = Cl − 3.24, total 98.29. The empirical formula based on Li + Al + Si = 6 apfu (atom per formula unit) is Li1.99Al4.00Si0.01[(OH)12.19Cl1.82(SO4)0.01]Σ14.02·2.60(H2O). The Raman spectroscopic data indicate the presence of O–H bonding in the mineral, whereas CO32– groups are absent. The crystal structure has been refined in the space group P63/mcm, a = 5.0960(3), c = 15.3578(13) Å, and V = 345.4(5) Å3, to R1 = 0.088 using single-crystal data. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 7.68 (100) (002), 4.422 (61) (010), 3.832 (99) (004, 012), 2.561 (30) (006), 2.283 (25) (113), and 1.445 (26) (032). Dritsite was found as 2H polytype, which is isotypic with synthetic material and shows strong similarity to chlormagalumite-2H. The mineral is named in honour of the Russian crystallographer and mineralogist Prof. Victor Anatol`evich Drits.

Author(s):  
Barbara Lafuente ◽  
Robert T. Downs

The crystal structure of brackebuschite, ideally Pb2Mn3+(VO4)2(OH) [dilead(II) manganese(III) vanadate(V) hydroxide], was redetermined based on single-crystal X-ray diffraction data of a natural sample from the type locality Sierra de Cordoba, Argentina. Improving on previous results, anisotropic displacement parameters for all non-H atoms were refined and the H atom located, obtaining a significant improvement of accuracy and an unambiguous hydrogen-bonding scheme. Brackebuschite belongs to the brackebuschite group of minerals with general formulaA2M(T1O4)(T2O4)(OH, H2O), withA= Pb2+, Ba, Ca, Sr;M= Cu2+, Zn, Fe2+, Fe3+, Mn3+, Al;T1 = As5+, P, V5+; andT2 = As5+, P, V5+, S6+. The crystal structure of brackebuschite is based on a cubic closest-packed array of O and Pb atoms with infinite chains of edge-sharing [Mn3+O6] octahedra located about inversion centres and decorated by two unique VO4tetrahedra (each located on a special position 2e, site symmetrym). One type of VO4tetrahedra is linked with the1∞[MnO4/2O2/1] chain by one common vertex, alternating with H atoms along the chain, while the other type of VO4tetrahedra link two adjacent octahedra by sharing two vertices with them and thereby participating in the formation of a three-membered Mn2V ring between the central atoms. The1∞[Mn3+(VO4)2OH] chains run parallel to [010] and are held together by two types of irregular [PbOx] polyhedra (x= 8, 11), both located on special position 2e(site symmetrym). The magnitude of the libration component of the O atoms of the1∞[Mn3+(VO4)2OH] chain increases linearly with the distance from the centerline of the chain, indicating a significant twisting to and fro of the chain along [010]. The hydroxy group bridges one Pb2+cation with two Mn3+cations and forms an almost linear hydrogen bond with a vanadate group of a neighbouring chain. The O...O distance of this interaction determined from the structure refinement agrees well with Raman spectroscopic data.


2014 ◽  
Vol 78 (7) ◽  
pp. 1755-1762 ◽  
Author(s):  
Peter Elliott ◽  
Mark A. Cooper ◽  
Allan Pring

AbstractThe new mineral species barlowite, ideally Cu4FBr(OH)6, has been found at the Great Australia mine, Cloncurry, Queensland, Australia. It is the Br and F analogue of claringbullite. Barlowite forms thin blue, platy, hexagonal crystals up to 0.5 mm wide in a cuprite-quartz-goethite matrix associated with gerhardtite and brochantite. Crystals are transparent to translucent with a vitreous lustre. The streak is sky blue. The Mohs hardness is 2–2.5. The tenacity is brittle, the fracture is irregular and there is one perfect cleavage on {001}. Density could not be measured; the mineral sinks in the heaviest liquid available, diluted Clerici solution (D &3.8 g/cm3). The density calculated from the empirical formula is 4.21 g/cm3. Crystals are readily soluble in cold dilute HCl. The mineral is optically non-pleochroic and uniaxial (–). The following optical constants measured in white light vary slightly suggesting a small variation in the proportions of F, Cl and Br: ω 1.840(4)–1.845(4) and ε 1.833(4)–1.840(4). The empirical formula, calculated on the basis of 18 oxygen atoms and H2O calculated to achieve 8 anions and charge balance, is Cu4.00F1.11Br0.95Cl0.09(OH)5.85. Barlowite is hexagonal, space group P63/mmc, a = 6.6786(2), c = 9.2744(3) Å , V = 358.251(19) Å3, Z = 2. The five strongest lines in the powder X-ray diffraction pattern are [d(Å )(I)(hkl)]: 5.790(100)(010); 2.889(40)(020); 2.707(55)(112); 2.452(40)(022); 1.668(30)(220).


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I > 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


2000 ◽  
Vol 294-296 ◽  
pp. 327-330 ◽  
Author(s):  
W. Sun ◽  
F.J. Lincoln ◽  
K. Sugiyama ◽  
K. Hiraga

2018 ◽  
Vol 82 (2) ◽  
pp. 313-327
Author(s):  
Markus B. Raschke ◽  
Evan J. D. Anderson ◽  
Jason Van Fosson ◽  
Julien M. Allaz ◽  
Joseph R. Smyth ◽  
...  

ABSTRACTThalénite-(Y), ideally Y3Si3O10F, is a heavy-rare-earth-rich silicate phase occurring in granite pegmatites that may help to illustrate rare-earth element (REE) chemistry and behaviour in natural systems. The crystal structure and mineral chemistry of thalénite-(Y) were analysed by electron microprobe analysis, X-ray diffraction and micro-Raman spectroscopy from a new locality in the peralkaline granite of the Golden Horn batholith, Okanogan County, Washington State, USA, in comparison with new analyses from the White Cloud pegmatite in the Pikes Peak batholith, Colorado, USA. The Golden Horn thalénite-(Y) occurs as late-stage sub-millimetre euhedral bladed transparent crystals in small miarolitic cavities in an arfvedsonite-bearing biotite granite. It exhibits growth zoning with distinct heavy-rare-earth element (HREE) vs. light-rare-earth element (LREE) enriched zones. The White Cloud thalénite-(Y) occurs in two distinct anhedral and botryoidal crystal habits of mostly homogenous composition. In addition, minor secondary thalénite-(Y) is recognized by its distinct Yb-rich composition (up to 0.8 atoms per formula unit (apfu) Yb). Single-crystal X-ray diffraction analysis and structure refinement reveals Y-site ordering with preferential HREE occupation of Y2 vs. Y1 and Y3 REE sites. Chondrite normalization shows continuous enrichment of HREE in White Cloud thalénite-(Y), in contrast to Golden Horn thalénite-(Y) with a slight depletion of the heaviest REE (Tm, Yb and Lu). The results suggest a hydrothermal origin of the Golden Horn miarolitic thalénite-(Y), compared to a combination of both primary magmatic followed by hydrothermal processes responsible for the multiple generations over a range of spatial scales in White Cloud thalénite-(Y).


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beata Zielińska ◽  
Ewa Mijowska ◽  
Ryszard J. Kalenczuk

K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C) on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3and K2Ta4O11were obtained. It was also found that the sample composed of KTaO3and traces of unreacted Ta2O5(annealed at 600°C) exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD) and diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM) and an energy dispersive X-ray spectrometer (EDX) as its mode.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Sign in / Sign up

Export Citation Format

Share Document