scholarly journals Effects and Mechanism of Different Grinding Media on the Flotation Behaviors of Beryl and Spodumene

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 666 ◽  
Author(s):  
Hu ◽  
Sun

The flotation behavior of beryl and spodumene (typical silicate minerals) was studied at wet-grinding conditions with different grinding mediums, with dodecylamine or sodium oleate as the collector. The mechanism of potential influence of the grinding medium to the flotation behavior was investigated through measuring zeta potential of pure minerals, micro scanning by X-ray photoelectron spectroscopy (XPS), surface interaction simulation and etc. The test data suggested that, with dodecylamine as the collector and relatively lower pH, the recoveries of beryl and spodumene are higher with zircon balls as wet-grinding media than those with iron balls, while in the higher pH, the recovery difference became smaller. With sodium oleate as a collector, within the same pH environment, the recovery of beryl and spodumene under zircon ball wet-grinding is lower than those under iron wet-grinding. We observed formation of iron-hydroxyl complexes on the mineral surface after iron ball grinding, which are significant influence on the flotation behavior of silicate minerals. Furthermore, for iron wet-grinding, the iron adsorbed on the mineral surface increased the adsorption energy between laurylamine (cationic collector) and silicate minerals, which inhibited the interaction between collectors and minerals. On the other hand, the interaction energy between sodium oleate (anion collector) and silicate minerals was decreased, which promoted the interaction between collectors and minerals.

2020 ◽  
Vol 56 (3) ◽  
pp. 556-565
Author(s):  
Wei Yao ◽  
Maolin Li ◽  
Ming Zhang ◽  
Gongming Qian ◽  
Rui Cui ◽  
...  

2021 ◽  
pp. 117040
Author(s):  
Jingzhong Kuang ◽  
Xiaoyuan Wang ◽  
Mingming Yu ◽  
Weiquan Yuan ◽  
Zheyu Huang ◽  
...  

2018 ◽  
Vol 54 (11) ◽  
pp. 1803-1814 ◽  
Author(s):  
Junxun Jin ◽  
Yuyang Long ◽  
Huimin Gao ◽  
Zijie Ren

Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 349
Author(s):  
Shingo Ishihara ◽  
Kozo Shinoda ◽  
Junya Kano

This study tested the removal of arsenic from copper ore concentrate via a mechanochemical treatment by planetary ball milling. The harmful components of ore, such as arsenic, are increasing year by year and decreasing the copper grade, therefore there is a strong need to improve the separation of arsenic from copper ore. The effect of grinding as a result of chemical activation caused by mechanochemical treatment was evaluated by XRD and X-ray absorption spectroscopy (XAS) measurements. From the results of the XRD analysis, several crystalline minerals were identified from the original samples. The diffraction peaks of the original samples were reduced by grinding, although grinding did not generate any new diffraction peaks. The comparison of the results of grinding in dry and wet conditions showed that the rate of disappearance of the crystalline minerals was faster in dry grinding than in wet grinding. To clarify the chemical state of arsenic in copper ore, XAS analysis was carried out. The results indicated that the arsenic compound changed from sulfide, in the original sample, to oxide after grinding. As a result of oxidation, the arsenic was easy to dissolve in a water and alkaline solution, and optimized dry and wet grinding conditions achieved up to 76% arsenic removal efficiency.


2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


2013 ◽  
Vol 712-715 ◽  
pp. 743-747
Author(s):  
Zhi Qiang Rao ◽  
Yu Shu Zhang ◽  
Yong Chao Jin

Oolitic hematite is one of the most refractory iron ores with complicate mineral compositions and abundant reserves in China. The hematite and limonite in the ore integrate closely with fine particles of collophanite, quartz, chamosite, calcite and chalcedony to form concentric ring structure, making the separation of the minerals extremely difficult. Since the tiny hematite crystal can not be liberated during the grinding of the ore the beneficiation can only be accomplished by recovering iron minerals aggregate with hematite as the major component. The previous research results showed that reverse flotation with fatty acid collectors could remove liberated phosphate minerals but not the quartz, chlorite and silicate minerals. This was because the gangue minerals such as quartz were contaminated by iron on the surface and there were high content of iron in some silicate minerals and high content of silicon in iron minerals, causing the floatability difference between the silicon and the iron minerals very small and thus the separation efficiency very low. Experiments were conducted to beneficiate the ore by reverse flotation with different cationic collectors. The results indicated that the flotation separation efficiency with most cationic collectors such as dodecylamine, ether amine, GE601 or GE609 was not satisfactory. However, a novel cationic collector for silicon removal, EM506 was found to be specifically selective to separate the gangue minerals from the iron ore with an increase of TFe grade from 49% to more than 58% and a recovery of TFe greater than 96%, which provided a promising approach for the beneficiation of the refractory oolitic hematite ore.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 177-184 ◽  
Author(s):  
G. Defontaine ◽  
J. Thormann ◽  
B.S. Lartiges ◽  
A.G. El Samrani ◽  
O. Barrès

The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent.


2014 ◽  
Vol 552 ◽  
pp. 263-268
Author(s):  
Han Quan Zhang ◽  
Feng Ling Wang

Selective adsorption of collectors on mineral surface can directly impact the flotation separation performance. Mineral flotation tests indicated that reverse flotation of synthetic magnetite can only bring a 2 to 4 percent increase in the concentrate grade, tailings grade remains high. The amounts of commonly used fatty acid collector, such as sodium oleate, adsorbed onto mineral surface are measured with indirect measurement to investigate adsorption selectivity of fatty acid collectors by synthetic magnetite. Results showed a higher selectivity in collector adsorption for natural magnetite, with 38.25% difference in the average adsorption rate of sodium oleate between the valuable minerals and gangue, but a less selective adsorption of fatty acid collector onto artificial magnetite, with only 1% difference in the average adsorption rate between its valuable and gangue.


Sign in / Sign up

Export Citation Format

Share Document