scholarly journals Euphorbia formosana Root Extract Induces Apoptosis by Caspase-Dependent Cell Death via Fas and Mitochondrial Pathway in THP-1 Human Leukemic Cells

Molecules ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 1949-1962 ◽  
Author(s):  
Yi-Jen Hsieh ◽  
Chih-Jui Chang ◽  
Chin-Feng Wan ◽  
Chin-Piao Chen ◽  
Yi-Han Chiu ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 630-637 ◽  
Author(s):  
Bing Z. Carter ◽  
Duncan H. Mak ◽  
Wendy D. Schober ◽  
Teresa McQueen ◽  
David Harris ◽  
...  

Triptolide, a diterpenoid isolated from the Chinese herb Tripterygium wilfordii Hook.f, has shown antitumor activities in a broad range of solid tumors. Here, we examined its effects on leukemic cells and found that, at 100 nM or less, it potently induced apoptosis in various leukemic cell lines and primary acute myeloid leukemia (AML) blasts. We then attempted to identify its mechanisms of action. Triptolide induced caspase-dependent cell death accompanied by a significant decrease in XIAP levels. Forced XIAP overexpression attenuated triptolide-induced cell death. Triptolide also decreased Mcl-1 but not Bcl-2 and Bcl-XL levels. Bcl-2 overexpression suppressed triptolide-induced apoptosis. Further, triptolide induced loss of the mitochondrial membrane potential and cytochrome C release. Caspase-9 knock-out cells were resistant, while caspase-8–deficient cells were sensitive to triptolide, suggesting criticality of the mitochondrial but not the death receptor pathway for triptolide-induced apoptosis. Triptolide also enhanced cell death induced by other anticancer agents. Collectively, our results demonstrate that triptolide decreases XIAP and potently induces caspase-dependent apoptosis in leukemic cells mediated through the mitochondrial pathway at low nanomolar concentrations. The potent antileukemic activity of triptolide in vitro warrants further investigation of this compound for the treatment of leukemias and other malignancies.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


2019 ◽  
Vol Volume 14 ◽  
pp. 7173-7190 ◽  
Author(s):  
Ana Carolina Martinez-Torres ◽  
Helen Yarimet Lorenzo-Anota ◽  
Martín Gerardo García-Juárez ◽  
Diana G. Zárate-Triviño ◽  
Cristina Rodriguez-Padilla

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3394-3394
Author(s):  
Bing Z. Carter ◽  
Wendy D. Schober ◽  
Teresa McQueen ◽  
Randall L. Evans ◽  
Michael Andreeff

Abstract Triptolide, an immunosuppressor isolated from the Chinese herb, Tripterygium wilfordii Hook. F, has recently shown anti-tumor activities in a broad range of solid tumors. We examined its effects on leukemic cells and investigated mechanisms of apoptosis. Triptolide, at less than 100 nM, arrested cell growth and potently induced cell death in myeloid and lymphoid leukemic cells tested, including OCI-AML3, U937, Jurkat, KBM5, and K562 cells. In OCI-AML3 cells, triptolide induced caspase 3 activation, PARP cleavage and annexin V positivity with an IC50 of about 30 nM, at 24 hrs, all of which were inhibited by a general caspase inhibitor suggesting caspase dependent cell death. However, Triptolide-induced cell growth arrest was not affected by caspase inhibition. Treatment of OCI-AML3 cells with triptolide decreased XIAP and survivin expression, but did not affect Bcl2 and BclXL levels. Forced overexpression of XIAP attenuated Triptolide-induced cell death. Triptolide induced Bid cleavage, but Jurkat cells deficient in caspase 8 were only slightly less sensitive to triptolide than the wild-type counterpart indicating that Triptolide-induced cell death is caspase 8 independent. Jurkat cells deficient in receptor interacting protein (RIP) and therefore deficient in NFκB activation were resistant to Triptolide demonstrating that NFκB signaling is essential for Triptolide-induced cell death. Triptolide treatment induced cytosolic release of cytochrome C and loss of mitochondrial membrane potential, overexpression of Bcl2 effectively suppressed apoptosis induced by Triptolide, and caspase 9 knockout MEF cells were resistant to Triptolide suggesting criticality of the mitochondrial pathway. The antioxidants GSH (5 mM) and vitamin C (150 μM) did not protect from apoptotic cell death induced by Triptolide. In addition, Triptolide-induced apoptosis of blast crisis CML KBM5 cells was independent of their sensitivity or resistance to Imatinib: Triptolide killed Imatinib resistant KBMSTI cells as effectively as Imatinib sensitive KBM5 cells. Ex vivo studies showed that Triptolide also induced cell death in primary AML blasts. Collectively, our studies demonstrate that Triptolide potently induces caspase-dependent apoptosis and arrests cell growth in leukemic cells. Triptolide-induced cell death is dependent on NFκB signaling, and mediated by downregulation of XIAP and survivin through the mitochondrial pathway. The potent anti-leukemic activity of Triptolide in vitro warrants further investigation of this compound for the treatment of leukemia and other malignancies. This drug may also be potentially useful in overcoming Imatinib resistance in CML and Philadelphia chromosome positive ALL.


2017 ◽  
Vol 20 ◽  
pp. 481-490 ◽  
Author(s):  
Maria-Eleni Sakavitsi ◽  
Maria-Ioanna Christodoulou ◽  
Job Tchoumtchoua ◽  
Nikolas Fokialakis ◽  
Ioanna K. Kokkinopoulou ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4215-4215
Author(s):  
Patrick Jesse ◽  
Gritt Mottke ◽  
Georg Seifert ◽  
Simone Fulda ◽  
Guenter Henze ◽  
...  

Abstract Helleborus niger, also known as Christmas Rose, belongs to the family of Ranunculaceae, a family of flowering plants with about 2500 different species. In complementary medicine Helleborus niger is used as adjuvant drug in the treatment of non-metastasised and metastasised forms of bronchial cancer, abdominal tumours and prostate cancer. It is also applied in myeloproliferative diseases like Hodgkin and Non-Hodgkin lymphoma, leukaemic disorders and AIDS- related diseases like the Kaposi sarcoma. Until now, there is no clinical or preclinical data regarding the effects of Helleborus niger in vivo, ex vivo or in vitro. For this purpose, we investigated the cytotoxic effects of four different standardized aqueous Helleborus niger extracts from the companies Hiscia and Helixor on various cancer cell lines. We used one whole plant extract, one root extract, one leave extract and one containing only the blossom of Helleborus niger. After 4h of treatment with the extracts no significant LDH release was measured, thus excluding an unspecific, necrotic damage of the cell membrane. After 24h a dose dependent inhibition of proliferation up to 69% could be found and after 48h a distinction into early (45,2%) and late apoptotic (45,5%) cells was detected via Annexin/PI staining. The cell cycle analysis revealed characteristic hypodiploid DNA fragments after 72h, once more identifying apoptosis as cause of the cell death. In the Western Blot analysis a processing of Caspase-3 could be found after 36 h incubation with the extract. Apoptotic cell death was detected in the Burkitt-like lymphoma cell line BJAB, the three human acute lymphoblastic leukemia cell lines NALM-6, Sup-B-15 and REH and the melanoma cell line MEL-HO. The apoptosis induction caused by the root extract was higher than the apoptotic cell death in the other extracts. There are two major pathways of apoptosis, the extrinsic pathway via death receptors like FADD and the intrinsic pathway via the mitochondria. In BJAB cells a breakdown of the mitochondrial membrane potential and dose-dependent mitochondrial permeability transition was detected after 48h, revealing that apoptosis is executed via the mitochondrial pathway. Furthermore, we found a decreased apoptosis induction in BCL-2 overexpressing melanoma cells. The dependency of Bcl-2 expression is another sign of apoptosis via the mitochondrial pathway. In contrast, apoptosis induction by Helleborus niger seems to be independent of Smac overexpression, which could be shown in Jurkat cells. In combination with the vinca alkaloid vincristine, which is used in the treatment of ALL, a synergistic effect could be detected. The apoptosis induction was up to 16% higher in combination than in the single treatment. Finally, we evaluated the effect on primary leukemia cells ex vivo. Interestingly, we could show a significant apoptosis induction in primary leukemia cells from 2 patients with ALL or AML in childhood, which were resistant to the treatment with the anthracycline doxorubicin. For the first time, we were able to show that extracts of Helleborus niger induce apoptosis in different cancer cell lines and primary leukemia cells. Apoptosis is executed via the intrinsic pathway and is independent of Smac overexpression. Thus, we present an interesting baseline for the design of upcoming in vivo experiments or clinical trials.


Blood ◽  
2001 ◽  
Vol 97 (12) ◽  
pp. 3931-3940 ◽  
Author(s):  
Olivier Sordet ◽  
Cédric Rébé ◽  
Ingrid Leroy ◽  
Jean-Marie Bruey ◽  
Carmen Garrido ◽  
...  

Exposure of U937 human leukemic cells to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces their differentiation into monocyte/macrophage-like cells. This terminal differentiation is associated with a resistant phenotype to apoptosis induced by the topoisomerase II inhibitor etoposide. The inhibition occurs upstream of the mitochondrial release of cytochrome c and the activation of procaspase-2, -3, -6, -7, -8, and -9. By using cell-free systems, it was demonstrated that the mitochondrial pathway to cell death that involves mitochondrial membrane depolarization, cytochrome c release and cytosolic activation of procaspases by cytochrome c/dATP remains functional in TPA-differentiated U937 cells. Accordingly, 2 drugs recently shown to target the mitochondria, namely lonidamine and arsenic trioxide, bypass the resistance of TPA-differentiated U937 cells to classical anticancer drugs. Cell death induced by the 2 compounds is associated with mitochondrial membrane depolarization, release of cytochrome c and Smac/Diablo from the mitochondria, activation of caspases, poly(ADP-ribose) polymerase cleavage and internucleosomal DNA fragmentation. Moreover, the decreased glutathione content associated with the differentiation process amplifies the ability of arsenic trioxide to activate the mitochondrial pathway to cell death. Similar results were obtained by comparing undifferentiated and TPA-differentiated human HL60 leukemic cells. These data demonstrate that mitochondria-targeting agents bypass the resistance to classical anticancer drugs induced by TPA-mediated leukemic cell differentiation.


2005 ◽  
Vol 42 (1) ◽  
pp. 061-074 ◽  
Author(s):  
Venicio F. Veiga ◽  
Leonardo Nimrichter ◽  
Cesar A. Teixeira ◽  
Marcelo M. Morales ◽  
Celuta S. Alviano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document