scholarly journals Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2007 ◽  
Author(s):  
Stefano Cattaneo ◽  
Hadi Naslhajian ◽  
Ferenc Somodi ◽  
Claudio Evangelisti ◽  
Alberto Villa ◽  
...  

We report the use of Ru catalysts supported in the activated carbon (AC) and carbon nanofibers (CNFs) for the selective production of liquid fuel dimethylfuran (DMF) and fuel additives alkoxymethyl furfurals (AMF). Parameters such as the reaction temperature and hydrogen pressure were firstly investigated in order to optimise the synthesis of the desired products. Simply by using a different support, the selectivity of the reaction drastically changed. DMF was produced with AC as support, while a high amount of AMF was produced when CNFs were employed. Moreover, the reusability of the catalysts was tested and deactivation phenomena were identified and properly addressed. Further studies need to be performed in order to optimise the stability of the catalysts.

RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 8469-8482 ◽  
Author(s):  
Yafei Shen ◽  
Xinlei Ge ◽  
Mindong Chen

This paper reviewed recent progress in catalytic oxidation of nitric oxide (NO) over various carbonaceous materials, such as activated carbon, carbon nanofibers with the aim of NO abatement.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 337
Author(s):  
Sara Mesa Medina ◽  
Ana Rey ◽  
Carlos Durán-Valle ◽  
Ana Bahamonde ◽  
Marisol Faraldos

Two commercial activated carbon were functionalized with nitric acid, sulfuric acid, and ethylenediamine to induce the modification of their surface functional groups and facilitate the stability of corresponding AC-supported iron catalysts (Fe/AC-f). Synthetized Fe/AC-f catalysts were characterized to determine bulk and surface composition (elemental analysis, emission spectroscopy, XPS), textural (N2 isotherms), and structural characteristics (XRD). All the Fe/AC-f catalysts were evaluated in the degradation of phenol in ultrapure water matrix by catalytic wet peroxide oxidation (CWPO). Complete pollutant removal at short reaction times (30–60 min) and high TOC reduction (XTOC = 80 % at ≤ 120 min) were always achieved at the conditions tested (500 mg·L−1 catalyst loading, 100 mg·L−1 phenol concentration, stoichiometric H2O2 dose, pH 3, 50 °C and 200 rpm), improving the results found with bare activated carbon supports. The lability of the interactions of iron with functionalized carbon support jeopardizes the stability of some catalysts. This fact could be associated to modifications of the induced surface chemistry after functionalization as a consequence of the iron immobilization procedure. The reusability was demonstrated by four consecutive CWPO cycles where the activity decreased from 1st to 3rd, to become recovered in the 4th run. Fe/AC-f catalysts were applied to treat two real water matrices: the effluent of a wastewater treatment plant with a membrane biological reactor (WWTP-MBR) and a landfill leachate, opening the opportunity to extend the use of these Fe/AC-f catalysts for complex wastewater matrices remediation. The degradation of phenol spiked WWTP-MBR effluent by CWPO using Fe/AC-f catalysts revealed pH of the reaction medium as a critical parameter to obtain complete elimination of the pollutant, only reached at pH 3. On the contrary, significant TOC removal, naturally found in complex landfill leachate, was obtained at natural pH 9 and half stoichiometric H2O2 dose. This highlights the importance of the water matrix in the optimization of the CWPO operating conditions.


2021 ◽  
Vol 45 ◽  
pp. 101434
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Sadaki Samitsu ◽  
Norfadhilatuladha Abdullah ◽  
Muhammad Faris Hamid ◽  
...  

2015 ◽  
Vol 326 ◽  
pp. 172-181 ◽  
Author(s):  
Hongbo Zhang ◽  
Christian Canlas ◽  
A. Jeremy Kropf ◽  
Jeffrey W. Elam ◽  
James A. Dumesic ◽  
...  

2012 ◽  
Vol 584 ◽  
pp. 229-233 ◽  
Author(s):  
Sakunthala Angamuthu Ananthan ◽  
Narayanan Vengidusamy ◽  
Krishnamoorthy Giribabu ◽  
Ranganathan Suresh

MWCNT supported Pt, Ru, and Pt–Ru catalysts were prepared and reduced at two different temperatures, 375°C (LTR) and 675°C (HTR) for the selective hydrogenation of citral to the corresponding unsaturated alcohols (geraniol and nerol). The catalysts were characterized by BET Surface area measurement, TPD, SEM, EDAX, TEM, XRD and XPS. It was found that the XRD of Pt and Ru shows fcc and hcp crystalline structure respectively, which is uniformly dispersed with an average particles size of 3.5 nm and zero valence metallic state. The removal of acidic oxygen surface group is observed when heat- treatments in a inert atmosphere at 675°C were performed. The bimetallic catalyst of Pt-Ru/MWCNT (HTR) was found to afford remarkably high conversion levels (85%) and high selectivity (95%) provided that a thermal pretreatment was performed on the catalyst. These results can be rationalized in terms of electron transfer from the support to the metal. The catalysts are environment friendly and can be recycled for more than eight times.


1994 ◽  
Vol 60 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Giovanni Neri ◽  
Andrea Donato ◽  
Candida Milone ◽  
Lucina Mercadante ◽  
A. Maria Visco

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Nicolás Carrara ◽  
Carolina Betti ◽  
Fernando Coloma-Pascual ◽  
María Cristina Almansa ◽  
Laura Gutierrez ◽  
...  

A series of low-loaded metallic-activated carbon catalysts were evaluated during the selective hydrogenation of a medium-chain alkyne under mild conditions. The catalysts and support were characterized by ICP, hydrogen chemisorption, Raman spectroscopy, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR micro-ATR), transmission electronic microscopy (TEM), and X-ray photoelectronic spectroscopy (XPS). When studying the effect of the metallic phase, the catalysts were active and selective to the alkene synthesis. NiCl/C was the most active and selective catalytic system. Besides, when the precursor salt was evaluated, PdN/C was more active and selective than PdCl/C. Meanwhile, alkyne is present in the reaction media, and geometrical and electronic effects favor alkene desorption and so avoid their overhydrogenation to the alkane. Under mild conditions, nickel catalysts are considerably more active and selective than the Lindlar catalyst.


2015 ◽  
Vol 44 (46) ◽  
pp. 19956-19965 ◽  
Author(s):  
A. S. Bozzi ◽  
R. L. Lavall ◽  
T. E. Souza ◽  
M. C. Pereira ◽  
P. P. de Souza ◽  
...  

In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon.


Sign in / Sign up

Export Citation Format

Share Document