scholarly journals A Novel Substance P-Based Hydrogel for Increased Wound Healing Efficiency

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2215 ◽  
Author(s):  
Da Kim ◽  
Ji Jang ◽  
Song Jang ◽  
Jungsun Lee

The neuropeptide substance P (SP) is known to stimulate wound healing by regulating the production of relevant cytokines as well as cell proliferation and migration. However, the therapeutic application of SP is limited by its low stability under biological conditions and oxidation during purification, formulation, and storage. To address this problem, we developed a novel formulation of SP as an SP gel, and investigated its wound healing activity both in vitro and in vivo. SP in SP gel was stable at various temperatures for up to 4 weeks. In vitro, SP gel exhibited more potential as a candidate wound-healing agent than SP alone, as evidenced by the observed increases in the proliferation and migration of human epidermal keratinocytes and human dermal fibroblasts. In vivo experiments showed that SP gel treatment enhanced the healing of full-thickness wounds in mice as compared to SP alone. These results demonstrate the benefits of SP gel as a promising topical agent for wound treatment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Jian Zhang ◽  
Jihong Shi ◽  
Kaituo Liu ◽  
Xujie Wang ◽  
...  

Abstract Background Hypertrophic scar (HS) is a fibro-proliferative disorder of dermis after burn or trauma and usually leads to esthetic disfiguration and functionary impairment for patients. Emerging evidences demonstrated ADSC-Exo could alleviate the visceral fibrosis, but little attention had been paid to its role in skin fibrosis. In the study, we would explore the effect of ADSC-Exo on HS and investigated the exact mechanism underlying the properties. Methods ADSC-Exo were isolated, identified, and internalized by HS-derived fibroblasts (HSFs). The effect of ADSC-Exo on the proliferation and migration of HSFs were detected by flow cytometry and Ki67 immunofluorescence staining, or scratch and trans-wells assays, respectively. RT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry staining were used to evaluate the expression of IL-17RA, Col1, Col3, α-SMA, SIP1, and p-Smad2/p-Smad3 in HSFs stimulated with ADSC-Exo, miR-192-5p mimics, or inhibitors, IL-17RA siRNA and their negative controls. Digital morphology, H&E, Masson’s trichrome staining, and immunohistochemistry staining were performed to measure the effect of ADSC-Exo and Lv-IL-17RA shRNA on excisional wound of BALB/c mice. Results The verified ADSC-Exo effectively inhibited the proliferation and migration of HSFs, decreased the expression of Col1, Col3, α-SMA, IL-17RA, and p-Smad2/p-Smad3 and increased the levels of SIP1 in HSFs. Besides, the mice in ADSC-Exo-treated group demonstrated faster wound healing and less collagen deposition. Furthermore, miR-192-5p was highly expressed in ADSC-Exo and ADSC-Exosomal miR-192-5p ameliorated hypertrophic scar fibrosis. Meanwhile, miR-192-5p targeted the expression of IL-17RA to decrease the pro-fibrotic proteins levels. Moreover, IL-17RA was overexpressed in HS and HSFs, and knockdown IL-17RA alleviated the expression of Col1, Col3, α-SMA, and p-Smad2/p-Smad3 and increased the expression of SIP1 in HSFs. Most importantly, IL-17RA silence also facilitated wound healing, attenuated collagen production, and modulated Smad pathway in HSFs. Conclusions This study illustrated ADSC-Exo attenuated the deposition of collagen, the trans-differentiation of fibroblasts-to-myofibroblasts, and the formation of hypertrophic scar by in vitro and in vivo experiments. ADSC-Exosomal miR-192-5p targeted IL-17RA to regulate Smad pathway in hypertrophic scar fibrosis. ADSC-Exo could be a promising therapeutic strategy for clinical treatment of hypertrophic scar and the anti-fibrotic properties could be achieved by miR-192-5p/IL-17RA/Smad axis.


Author(s):  
Byungcheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Sung Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes, and significantly increased the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


2018 ◽  
Vol 19 (11) ◽  
pp. 3642 ◽  
Author(s):  
Byung-Cheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


2020 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Diabetic wounds are a disturbing and rapidly growing clinical problem. A novel peptide, parathyroid hormone related peptide (PTHrP-2), is assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 were determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 were determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos were added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played a hub role in PTHrP-2 indirect effects in wound healing. Conclusion: These findings of this study indicated that PTHrP-2, a multifunctional factor, could promote wound healing via synergistic multicellular stimulating and exosomal activities. Key words PTH, multifunctional factor, diabetic wound, exosomes, synergistic effect


2019 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Chronic diabetic wounds are a disturbing and rapidly growing clinical problem. Parathyroid hormone related peptide (PTHrP-2) was assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in chronic wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 was determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 was determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos was added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played hub role in PTHrP-2 indirect effects in wound healing. Conclusion: The findings of this study indicate that PTHrP-2, a multifunctional factor, can promote chronic wound healing via synergistic multicellular stimulating and exosomal activities.


2021 ◽  
Vol 11 (19) ◽  
pp. 9343
Author(s):  
Ly Thi Huong Nguyen ◽  
Sang-Hyun Ahn ◽  
Min-Jin Choi ◽  
In-Jun Yang ◽  
Heung-Mook Shin

The delayed and impaired wound healing caused by dexamethasone (DEX) is commonly reported. Puerarin, the major isoflavone found in Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep promoted the wound healing process in diabetic rats. However, the effects and underlying mechanisms of puerarin on DEX-impaired wound healing have not been investigated. This study examined the potential uses of puerarin in upregulating keratinocyte proliferation and migration in dexamethasone (DEX)-suppressed wound healing model. The effects of puerarin on wound healing in vivo were investigated by taking full-thickness 5 mm punch biopsies from the dorsal skin of BALB/c mice and then treating them topically with 0.1% DEX. For the in vitro study, DEX-treated HaCaT cells were used to examine the effects of puerarin on DEX-induced keratinocyte proliferation and migration and the mechanisms of its action. Puerarin, when applied topically, accelerated the wound closure rate, increased the density of the capillaries, and upregulated the level of collagen fibers and TGF-β in the wound sites compared to the DEX-treated mice. Puerarin promoted the proliferation and migration of keratinocytes by activating the ERK and Akt signaling pathways in DEX-treated HaCaT cells. In conclusion, puerarin could be effective in reversing delayed and disrupted wound healing associated with DEX treatments.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Peng Wang ◽  
Zhicheng Hu ◽  
Xiaoling Cao ◽  
Shaobin Huang ◽  
Yunxian Dong ◽  
...  

Abstract Background Autologous epidermal basal cell suspension therapy has been proven to be one of the most effective treatments for full-thickness wounds. However, we found there remain obvious defects that significantly confined the utilization and function of the epidermal basal cells (EBCs), especially the epidermal stem cells (ESCs) in it. This study investigated whether precoating fibronectin (FN) on the wound bed before spraying EBCs could overcome these defects and further explored its possible mechanisms. Methods In the in vitro study, EBCs were isolated from the donor skin of patients who needed skin grafting. Different concentrations of FN were used to precoat culture dishes before cell culture; the adherent efficiency, proliferation and migration ability of ESCs were analyzed and compared with traditional collagen IV precoating. In the in vivo study, Sprague–Dawley (SD) rats with full-thickness skin wounds were selected as full-thickness wounds’ model. For the experiment groups, 20 μg/ml FN was precoated on the wound bed 10 min before EBC spray. The quality of wound healing was estimated by the residual wound area rate, wound healing time, and hematoxylin and eosin (H&E) staining. Expression of ESC markers, neovascular markers, inflammation markers, and collagen formation and degradation markers was elucidated by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and RT-qPCR analysis. Results The in vitro study showed that the dishes precoated with 20 μg/ml FN had a similar adherent efficiency and colony formation rate with collagen IV, but it could improve the proliferation and migration of ESCs significantly. Similarly, in the in vivo study, precoating FN on wound bed before EBC spray also significantly promote wound healing by improving ESCs’ utilization efficiency, promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Conclusion FN precoating wound bed before EBC spray could significantly promote full-thickness wound healing by improving the utilization and function of the ESCs and further by promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Graphical abstract


2020 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Chronic diabetic wounds are a disturbing and rapidly growing clinical problem. Parathyroid hormone related peptide (PTHrP-2) was assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in chronic wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 was determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 was determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos was added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played hub role in PTHrP-2 indirect effects in wound healing. Conclusion: The findings of this study indicate that PTHrP-2, a multifunctional factor, can promote chronic wound healing via synergistic multicellular stimulating and exosomal activities.


2021 ◽  
Vol 22 (20) ◽  
pp. 10930
Author(s):  
Shuai Guo ◽  
Xue Bai ◽  
Sai Shi ◽  
Yawen Deng ◽  
Xianjiang Kang ◽  
...  

Lung cancer has the highest rate of incidence and mortality among all cancers. Most chemotherapeutic drugs used to treat lung cancer cause serious side effects and are susceptible to drug resistance. Therefore, exploring novel therapeutic targets for lung cancer is important. In this study, we evaluated the potential of TMEM16A as a drug target for lung cancer. Homoharringtonine (HHT) was identified as a novel natural product inhibitor of TMEM16A. Patch-clamp experiments showed that HHT inhibited TMEM16A activity in a concentration-dependent manner. HHT significantly inhibited the proliferation and migration of lung cancer cells with high TMEM16A expression but did not affect the growth of normal lung cells in the absence of TMEM16A expression. In vivo experiments showed that HHT inhibited the growth of lung tumors in mice and did not reduce their body weight. Finally, the molecular mechanism through which HHT inhibits lung cancer was explored by western blotting. The findings showed that HHT has the potential to regulate TMEM16A activity both in vitro and in vivo and could be a new lead compound for the development of anti-lung-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document