scholarly journals Visfatin Promotes Wound Healing Through the Activation of ERK1/2 and JNK1/2 Pathway

Author(s):  
Byungcheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Sung Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes, and significantly increased the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.

2018 ◽  
Vol 19 (11) ◽  
pp. 3642 ◽  
Author(s):  
Byung-Cheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2215 ◽  
Author(s):  
Da Kim ◽  
Ji Jang ◽  
Song Jang ◽  
Jungsun Lee

The neuropeptide substance P (SP) is known to stimulate wound healing by regulating the production of relevant cytokines as well as cell proliferation and migration. However, the therapeutic application of SP is limited by its low stability under biological conditions and oxidation during purification, formulation, and storage. To address this problem, we developed a novel formulation of SP as an SP gel, and investigated its wound healing activity both in vitro and in vivo. SP in SP gel was stable at various temperatures for up to 4 weeks. In vitro, SP gel exhibited more potential as a candidate wound-healing agent than SP alone, as evidenced by the observed increases in the proliferation and migration of human epidermal keratinocytes and human dermal fibroblasts. In vivo experiments showed that SP gel treatment enhanced the healing of full-thickness wounds in mice as compared to SP alone. These results demonstrate the benefits of SP gel as a promising topical agent for wound treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1241
Author(s):  
Lucélia Albarello Balestrin ◽  
Tainá Kreutz ◽  
Flávia Nathiely Silveira Fachel ◽  
Juliana Bidone ◽  
Nicolly Espindola Gelsleichter ◽  
...  

Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen’s egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, ζ-potential of −40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 µg/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 μg/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1595 ◽  
Author(s):  
Sungjoo Park ◽  
Eunsu Ko ◽  
Jun Hyoung Lee ◽  
Yoseb Song ◽  
Chang-Hao Cui ◽  
...  

Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.


2020 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Diabetic wounds are a disturbing and rapidly growing clinical problem. A novel peptide, parathyroid hormone related peptide (PTHrP-2), is assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 were determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 were determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos were added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played a hub role in PTHrP-2 indirect effects in wound healing. Conclusion: These findings of this study indicated that PTHrP-2, a multifunctional factor, could promote wound healing via synergistic multicellular stimulating and exosomal activities. Key words PTH, multifunctional factor, diabetic wound, exosomes, synergistic effect


2019 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Chronic diabetic wounds are a disturbing and rapidly growing clinical problem. Parathyroid hormone related peptide (PTHrP-2) was assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in chronic wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 was determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 was determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos was added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played hub role in PTHrP-2 indirect effects in wound healing. Conclusion: The findings of this study indicate that PTHrP-2, a multifunctional factor, can promote chronic wound healing via synergistic multicellular stimulating and exosomal activities.


2021 ◽  
Vol 11 (19) ◽  
pp. 9343
Author(s):  
Ly Thi Huong Nguyen ◽  
Sang-Hyun Ahn ◽  
Min-Jin Choi ◽  
In-Jun Yang ◽  
Heung-Mook Shin

The delayed and impaired wound healing caused by dexamethasone (DEX) is commonly reported. Puerarin, the major isoflavone found in Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep promoted the wound healing process in diabetic rats. However, the effects and underlying mechanisms of puerarin on DEX-impaired wound healing have not been investigated. This study examined the potential uses of puerarin in upregulating keratinocyte proliferation and migration in dexamethasone (DEX)-suppressed wound healing model. The effects of puerarin on wound healing in vivo were investigated by taking full-thickness 5 mm punch biopsies from the dorsal skin of BALB/c mice and then treating them topically with 0.1% DEX. For the in vitro study, DEX-treated HaCaT cells were used to examine the effects of puerarin on DEX-induced keratinocyte proliferation and migration and the mechanisms of its action. Puerarin, when applied topically, accelerated the wound closure rate, increased the density of the capillaries, and upregulated the level of collagen fibers and TGF-β in the wound sites compared to the DEX-treated mice. Puerarin promoted the proliferation and migration of keratinocytes by activating the ERK and Akt signaling pathways in DEX-treated HaCaT cells. In conclusion, puerarin could be effective in reversing delayed and disrupted wound healing associated with DEX treatments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Jian Zhang ◽  
Jihong Shi ◽  
Kaituo Liu ◽  
Xujie Wang ◽  
...  

Abstract Background Hypertrophic scar (HS) is a fibro-proliferative disorder of dermis after burn or trauma and usually leads to esthetic disfiguration and functionary impairment for patients. Emerging evidences demonstrated ADSC-Exo could alleviate the visceral fibrosis, but little attention had been paid to its role in skin fibrosis. In the study, we would explore the effect of ADSC-Exo on HS and investigated the exact mechanism underlying the properties. Methods ADSC-Exo were isolated, identified, and internalized by HS-derived fibroblasts (HSFs). The effect of ADSC-Exo on the proliferation and migration of HSFs were detected by flow cytometry and Ki67 immunofluorescence staining, or scratch and trans-wells assays, respectively. RT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry staining were used to evaluate the expression of IL-17RA, Col1, Col3, α-SMA, SIP1, and p-Smad2/p-Smad3 in HSFs stimulated with ADSC-Exo, miR-192-5p mimics, or inhibitors, IL-17RA siRNA and their negative controls. Digital morphology, H&E, Masson’s trichrome staining, and immunohistochemistry staining were performed to measure the effect of ADSC-Exo and Lv-IL-17RA shRNA on excisional wound of BALB/c mice. Results The verified ADSC-Exo effectively inhibited the proliferation and migration of HSFs, decreased the expression of Col1, Col3, α-SMA, IL-17RA, and p-Smad2/p-Smad3 and increased the levels of SIP1 in HSFs. Besides, the mice in ADSC-Exo-treated group demonstrated faster wound healing and less collagen deposition. Furthermore, miR-192-5p was highly expressed in ADSC-Exo and ADSC-Exosomal miR-192-5p ameliorated hypertrophic scar fibrosis. Meanwhile, miR-192-5p targeted the expression of IL-17RA to decrease the pro-fibrotic proteins levels. Moreover, IL-17RA was overexpressed in HS and HSFs, and knockdown IL-17RA alleviated the expression of Col1, Col3, α-SMA, and p-Smad2/p-Smad3 and increased the expression of SIP1 in HSFs. Most importantly, IL-17RA silence also facilitated wound healing, attenuated collagen production, and modulated Smad pathway in HSFs. Conclusions This study illustrated ADSC-Exo attenuated the deposition of collagen, the trans-differentiation of fibroblasts-to-myofibroblasts, and the formation of hypertrophic scar by in vitro and in vivo experiments. ADSC-Exosomal miR-192-5p targeted IL-17RA to regulate Smad pathway in hypertrophic scar fibrosis. ADSC-Exo could be a promising therapeutic strategy for clinical treatment of hypertrophic scar and the anti-fibrotic properties could be achieved by miR-192-5p/IL-17RA/Smad axis.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chun Yue ◽  
Zi Guo ◽  
Yufang Luo ◽  
Jingjing Yuan ◽  
Xinxing Wan ◽  
...  

Objective. Mesenchymal stem cells (MSCs) are considered a promising therapy for wound healing. Here, we explored the role of c-Jun in diabetic wound healing using human umbilical cord-derived MSCs (hUC-MSCs). Methods. Freshly isolated hUC-MSCs were subjected to extensive in vitro subcultivation. The cell proliferative and migratory capacities were assessed by the Cell Counting Kit-8 and scratch assays, respectively. c-Jun expression was evaluated by RT-PCR and western blot analysis. The function of c-Jun was investigated with lentivirus transduction-based gene silencing and overexpression. Diabetes mellitus was induced in SD rats on a high-glucose/fat diet by streptozocin administration. Wounds were created on the dorsal skin. The effects of c-Jun silencing and overexpression on wound closure by hUC-MSCs were examined. Reepithelialization and angiogenesis were assessed by histological and immunohistochemical analysis, respectively. Platelet-derived growth factor A (PDGFA), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) levels were determined by western blot analysis. Results. hUC-MSCs showed gradually decreased cell proliferation, migration, and c-Jun expression during subcultivation. c-Jun silencing inhibited cell proliferation and migration, while c-Jun overexpression enhanced proliferation but not migration. Compared with untransduced hUC-MSCs, local subcutaneous injection of c-Jun-overexpressing hUC-MSCs accelerated wound closure, enhanced angiogenesis and reepithelialization at the wound bed, and increased PDGFA and HGF levels in wound tissues. Conclusion. c-Jun overexpression promoted hUC-MSC proliferation and migration in vitro and accelerated diabetic wound closure, reepithelization, and angiogenesis by hUC-MSCs in vivo. These beneficial effects of c-Jun overexpression in diabetic wound healing by hUC-MSCs were at least partially mediated by increased PDGFA and HGF levels in wound tissues.


Sign in / Sign up

Export Citation Format

Share Document