scholarly journals Targeted Lignan Profiling and Anti-Inflammatory Properties of Schisandra rubriflora and Schisandra chinensis Extracts

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3103 ◽  
Author(s):  
Agnieszka Szopa ◽  
Michał Dziurka ◽  
Angelika Warzecha ◽  
Paweł Kubica ◽  
Marta Klimek-Szczykutowicz ◽  
...  

Schisandra rubriflora is a dioecious plant of increasing importance due to its lignan composition, and therefore, possible therapeutic properties. The aim of the work was lignan profiling of fruits, leaves and shoots of female (F) and male (M) plants using UHPLC-MS/MS. Additionally, the anti-inflammatory activity of plant extracts and individual lignans was tested in vitro for the inhibition of 15-lipooxygenase (15-LOX), phospholipases A2 (sPLA2), cyclooxygenase 1 and 2 (COX-1; COX-2) enzyme activities. The extracts of fruits, leaves and shoots of the pharmacopoeial species, S. chinensis, were tested for comparison. Twenty-four lignans were monitored. Lignan contents in S. rubriflora fruit extracts amounted to 1055.65 mg/100 g DW and the dominant compounds included schisanhenol, aneloylgomisin H, schisantherin B, schisandrin A, gomisin O, angeloylgomisin O and gomisin G. The content of lignan in leaf extracts was 853.33 (F) and 1106.80 (M) mg/100 g DW. Shoot extracts were poorer in lignans—559.97 (F) and 384.80 (M) mg/100 g DW. Schisantherin B, schisantherin A, 6-O-benzoylgomisin O and angeloylgomisin H were the dominant compounds in leaf and shoot extracts. The total content of detected lignans in S. chinensis fruit, leaf and shoot extracts was: 1686.95, 433.59 and 313.83 mg/100 g DW, respectively. Gomisin N, schisandrin A, schisandrin, gomisin D, schisantherin B, gomisin A, angeloylgomisin H and gomisin J were the dominant lignans in S. chinensis fruit extracts were. The results of anti-inflammatory assays revealed higher activity of S. rubriflora extracts. Individual lignans showed significant inhibitory activity against 15-LOX, COX-1 and COX-2 enzymes.

2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Anna Macková ◽  
Pavel Mučaji ◽  
Ute Widowitz ◽  
Rudolf Bauer

Interest in the anti-inflammatory effects of Ligustrum vulgare L., which has been used traditionally in China and Japan prompted us to determine anti-inflammatory effects of the plant's compounds in leukocytes. The leaves of L. vulgare were used to prepare a decoction which was successively extracted with organic solvents (dichloromethane (DCM), n-butanol, ethyl acetate) using liquid-liquid partition. Extracts were tested for inhibition of LTB4, resp. PGE2 biosynthesis. Each extract was evaluated for its in vitro cyclooxygenase-1/2 (COX-1/2) inhibitory activity using assays with purified COX-1 and COX-2 enzymes, as well as for their LTB4 formation inhibitory activity using an assay with activated human neutrophil granulocytes. All extracts reported inhibitory actions against COXs in comparison with the synthetic inhibitors NS-398 (IC50 = 2.6 μM) and indomethacin (IC50 = 0.9 μM). The dichloromethane extract of privet leaves showed a considerable inhibitory effect against COX-1 and COX-2 enzyme activity. The DCM extract revealed 2.7 times higher inhibitory activity against LTB4 formation in comparison with the known specific LT inhibitor zileuton (IC50 = 5.0 μM). Additionally, oleuropein and echinacoside were detected by HPLC-DAD and LC-MS in the Ligustrum vulgare leaves. Both compounds exhibited weak inhibitory activity on cyclooxygenases and leukotriene formation.


Author(s):  
Yosie Andriani ◽  
Leni Marlina ◽  
Habsah Mohamad ◽  
Hermansyah Amir ◽  
Siti Aisha M Radzi ◽  
...  

  Objective: This study aimed to investigate the anti-inflammatory activity of methanol extract and fractions of bacteria associated with sponge (Haliclona amboinensis) and to evaluate their effect in reducing NO production and inhibiting cyclooxygenase-1 (COX-1), cyclooxgenase-2 (COX-2) and secretory phospholipase A2 (sPLA2) activity.Methods: All bacterial isolates were cultured and supernatants were collected for the extraction of secondary metabolites using diaion HP-20 to obtain methanol extracts. Evaluation of cytotoxicity property was carried out on macrophage cell lines (RAW264.7) by 3-(4,5-dimethylthiazol- 2-yl) 2,5-diphenyl tetrazoliumbromide assay. Anti-inflammatory screening was done by inducible nitric oxide assay on RAW264.7 cell lines with lipopolysaccharide (LPS) stimulation. Dianion HP-20 was used to remove salt content. A selected methanol extract was subjected to further fractionations by C-18 reverse phase and their anti-inflammatory potential was evaluated by COX-1 and COX-2, and sPLA2 enzymatic assay.Results: Seven methanol extracts showed no cytotoxic property against RAW 264.7 cell line (inhibitory concentration 50% > 30 μg/ml) and selected for anti-inflammatory screening assay. Result showed methanol extract HM 1.2 reduced NO production >80% and it has been selected for phytochemical screening, further fractionations and assay. Phytochemical screening showed alkaloids and terpenoids present in the HM 1.2. The HM 1.2 and its fractions (F1, F2, F1C1, F1C2, F1C3, and F1C4) were proven to inhibit COX-1, COX-2, and sPLA2 activity in the range of 60.516-116.886%, 20.554- 116.457%, and 70.2667-114.8148%, respectively.Conclusions: This study revealed that bacteria associated with H. amboinensis have produced anti-inflammatory activity via reducing NO production and inhibiting COX-1, COX-2, and sPLA2 activity. 


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Yuzhong Zheng ◽  
Guizhong Xin ◽  
Guowei Gong ◽  
Tina TX Dong ◽  
Ping Li ◽  
...  

Background. Guizhi Fuling capsule (GFC), a well-known formula composed of five medicinal herbs, is commonly prescribed to treat primary dysmenorrhea, as well as to achieve good clinical efficacy in China. However, the active components of GFC have not been identified. Here, the anti-inflammatory functions of GFC, as well as its major ingredients, were evaluated in human umbilical vein endothelial cells (HUVECs). Methods. Lipopolysaccharide (LPS) was used in HUVECs to imitate the cellular inflammation. Then, GFC-triggered mRNA expressions of cyclooxygenase-1 (COX-1) and COX-2 were determined by real-time PCR, while the expression of COX-2 protein was revealed by western blotting. Besides, nine components of GFC were evaluated for their contribution value in the anti-dysmenorrhea effects Results. The application of GFC downregulated the mRNA expressions of COX-1 and COX-2 mRNAs. Nine major components of GFC were tested in the inflammatory system, and three compounds, including paeoniflorin, benzoylpaeoniflorin, and amygdalin, exhibited robust activation in HUVECs. The combination of paeoniflorin, benzoylpaeoniflorin, and amygdalin showed over 80% of the anti-inflammatory activation. Conclusion. Our study supports that GFC plays a promising role in anti-dysmenorrhea function by decreasing COXs’ expression. Besides, paeoniflorin, benzoylpaeoniflorin, and amygdalin could be considered as major regulators for the anti-dysmenorrhea effects of GFC.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 220 ◽  
Author(s):  
Ameen Ali Abu-Hashem ◽  
Sami A Al-Hussain ◽  
Magdi E. A. Zaki

Novel (4-methoxy or 4,8-dimethoxy)-3-methyl-N-(6-oxo-2-thioxo-1,2,3, 6-tetrahydro- pyrimidin-4-yl) benzo [1,2-b: 5, 4-b’] difuran-2-carboxamide (5a–b) has been synthesized by the reaction of visnagenone–ethylacetate (2a) or khellinone–ethylacetate (2b) with 6-aminothiouracil in dimethylformamide or refluxing of benzofuran-oxy-N-(2-thioxopyrimidine) acetamide (4a–b) in sodium ethoxide to give the same products (5a,b) in good yields. Thus, compounds 5a–b are used as an initiative to prepare many new heterocyclic compounds such as 2-(4-(3-methylbenzodifuran- 2-carbox-amido) pyrimidine) acetic acid (6a–b), N-(thiazolo[3, 2-a]pyrimidine)-3-methylbenzo- difuran-2-carboxamide (7a–b), N-(2-thioxopyrimidine)-methylbenzodifuran-2-carbimidoylchloride (8a–b), N-(2-(methyl-thio) pyrimidine)-3-methylbenzodifuran-2-carbimidoylchloride (9a–b), N-(2, 6 -di(piperazine or morpholine)pyrimidine)-1-(3-methylbenzodifuran)-1-(piperazine or morpholine) methanimine(10a–d), 8-(methylbenzodifuran)-thiazolopyrimido[1,6-a][1,3,5]triazine-3,5-dione (11a –b), 8-(3-methyl benzodifuran)-thiazolopyrimido[6,1-d][1,3,5]oxadiazepine-trione (12a–b), and 2,10 -di(sub-benzylidene)-8-(3-methylbenzodifuran)-thiazolopyrimido[6,1-d][1,3,5]oxadiazepine-3,5,11- trione (13a–f). All new chemical structures were illustrated on the basis of elemental and spectral analysis (IR, NMR, and MS). The new compounds were screened as cyclooxygenase-1/ cyclooxygenase-2 (COX-1/COX-2) inhibitors and had analgesic and anti-inflammatory activities. The compounds 10a–d and 13a–f had the highest inhibitory activity on COX-2 selectivity, with indices of 99–90, analgesic activity of 51–42% protection, and anti-inflammatory activity of 68%–59%. The inhibition of edema for the same compounds, 10a–d and 13a–f, was compared with sodium diclofenac as a standard drug.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49098-49109 ◽  
Author(s):  
Luísa C. R. Carvalho ◽  
Daniela Ribeiro ◽  
Raquel S. G. R. Seixas ◽  
Artur M. S. Silva ◽  
Mariana Nave ◽  
...  

Non-steroidal anti-inflammatory drugs exert their pharmacological activity through inhibition of cyclooxygenase 1 and 2 (COX-1 and COX-2).


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S114-S115
Author(s):  
S Adebayo

Abstract Introduction/Objective Medicinal plants have a long history of use and has been exploited for basic health care needs for many centuries. The various parts of plants are rich sources of a plethora of pharmacologically active remedies that has remained largely unexplored for their therapeutic capabilities. Grewia mollis is one of the medicinal plants that are used to treat painful inflammatory conditions including rheumatism and associated fever. The inhibition of enzymes involved in prostaglandin (PG) synthesis are of great interest in combating chronic inflammation. Cyclooxygenases (COX) and Lipoxygenases (LOX), in particular COX-2 and 5-LOX utilize different pathways for PG synthesis and are important drivers of chronic inflammation. However, the use of conventional anti-inflammatory drugs and specific enzyme inhibitors against them are associated with severe adverse side-effects and organ toxicities. Therefore, attention has shifted to the search for potent and safer alternative strategies to treat chronic inflammation involving these mediators Methods The leaf part of G. mollis was extracted with solvents of varying polarities. The extracts were tested in vitro against COX-1, 2 and 5-LOX. In addition, the cytotoxicity and selectivity index of the plant extracts were evaluated using vero monkey kidney cells Results The hexane fraction of G. mollis leaf extracts had better inhibition against COX-1 (0,97±1,9 µg/mL) and COX-2 (1,13±0,2 µg/mL) when compared with the indomethacin control (1,30±0,6 µg/mL) and (1,52±0,2 µg/mL) respectively. Also, the butanol fraction inhibited 5-LOX (12,48±2,9 µg/mL) better than quercetin positive control (61,82±5,5 µg/mL). Overall, the extracts and fractions indicated reduced cytotoxicity (30,56-689,39 µg/mL) relative to the doxorubicin control (2,59 µg/mL). Conclusion The results indicated that extracts of G. mollis contained bioactive molecules capable of inhibiting the activities of C0X and 5-LOX with lower cytotoxicity. Pharmacologically active molecules with safety profile could be used, at least as a part of the template for remedies against mediators of chronic inflammation


2019 ◽  
Vol 17 (1) ◽  
pp. 685-693
Author(s):  
Chen Xi ◽  
Liu Yuanyuan ◽  
Zhao Dongshuang ◽  
Fan Ziwei ◽  
Cao Shuang ◽  
...  

AbstractIn this research, we investigated possible anti-inflammatory roles of Prunus tomentosa Thunb Total Flavones (PTTTF) in LPS-induced RAW264.7 cells. PTTTF (4μg/ml and 40μg/ml) was applied to RAW264.7 cells induced with 1μg/ml LPS to test the impact of these flavones on neutrophil phagocytosis in vitro. Levels of prostaglandin E2 (PGE2) and two pro-inflammatory interleukin cytokines (i.e. IL-6 and IL-1β) in the supernatant fraction were tested via Enzyme-linked immunosorbent assays (ELISA). Expression of cyclooxygenases COX-1 and COX-2 was detected via RT-PCR. Superoxide dismutase (SOD) content was determined with a spectrophotometric assay (Micromethod). The results revealed that PTTTF at doses higher than 4μg/ml reduces the content of IL-6, IL-1β and PGE2 (P < 0.05), and elevates the activity of SOD in LPS-induced RAW264.7 cells significantly (P < 0.05). PTTTF at 40μg/ml showed no significant effect on the expression of COX-1(P>0.05) but resulted in a significant inhibition of COX-2 in LPS-induced RAW264.7 cells (P<0.05). In summary, PTTTF had a substantial potential anti-inflammatory effect through the alteration of the synthesis of some cytokines and other mediators of the process of inflammation. Novelty statement - Prunus tomentosa Thunb Total Flavones (PTTTF) have known roles in the treatment of diabetes, but here we show that they are also potential anti-inflammatory agents. Our results show that PTTTF exhibited anti-inflammatory effects through altering the synthesis of some cytokines and other mediators of the inflammatory process.


2007 ◽  
Vol 57 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Mange Yadav ◽  
Shrikant Shirude ◽  
Devendra Puntambekar ◽  
Pinkal Patel ◽  
Hetal Prajapati ◽  
...  

Studies in 3,4-diaryl-1,2,5-oxadiazoles and theirN-oxides: Search for better COX-2 inhibitorsA series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazoleN-oxides were prepared and evaluated for COX-2 and COX-1 binding affinityin vitroand for anti-inflammatory activity by the rat paw edema method.p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazoleN-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 μmol L-1and COX-1 enzyme inhibition of 44% at 88 μmol L-1concentrations, but showed very lowin vivoanti-inflammatory activity. Its deoxygenated derivative (21) showed lower COX-2 enzyme inhibition (26% at 22 μmol L-1) and higher COX-1 enzyme inhibition (53% at 88 μmol L-1) but, markedin vivoanti-inflammatory activity (71% at 25 mg kg-1)vs.celecoxib (48% at 12.5 mg kg-1). Molecular modeling (docking) studies showed that the methoxy group is positioned in the vicinity of COX-2 secondary pocket and it also participates in hydrogen bonding interactions in the COX-2 active site. These preliminary studies suggest thatp-methoxy (p-OMe) group in one of benzene rings may give potentially active leads in this series of oxadiazole/N-oxides.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 825
Author(s):  
Mohammad Khalid ◽  
Mohammed H. Alqarni ◽  
Ambreen Shoaib ◽  
Muhammad Arif ◽  
Ahmed I. Foudah ◽  
...  

The fruits of Spondias mangifera (S. mangifera) have traditionally been used for the management of rheumatism in the northeast region of India. The present study explores the probable anti-arthritis and anti-inflammatory potential of S. mangifera fruit extract’s ethanolic fraction (EtoH-F). To support this study, we first approached the parameters in silico by means of the active constituents of the plant (beta amyrin, beta sitosterol, oleonolic acid and co-crystallised ligands, i.e., SPD-304) via molecular docking on COX-1, COX-2 and TNF-α. Thereafter, the absorption, distribution, metabolism, excretion and toxicity properties were also determined, and finally experimental activity was performed in vitro and in vivo. The in vitro activities of the plant extract fractions were evaluated by means of parameters like 1,1-Diphenyl-2- picrylhydrazyl (DPPH), free radical-reducing potential, albumin denaturation, and protease inhibitory activity. The in vivo activity was evaluated using parameters like COX, TNF-α and IL-6 inhibition assay and arthritis score in Freund Adjuvant (CFA) models at a dose of 400 mg/kg b.w. per day of different fractions (hexane, chloroform, alcoholic). The molecular docking assay was performed on COX-1, COX-2 and TNF-α. The results of in vitro studies showed concentration-dependent reduction in albumin denaturation, protease inhibitors and scavenging activity at 500 µg/mL. Administration of the S. mangifera alcoholic fraction at the abovementioned dose resulted in a significant reduction (p < 0.01) in arthritis score, paw diameters, TNF-α, IL-6 as compared to diseased animals. The docking results showed that residues show a critical binding affinity with TNF-α and act as the TNF-α antagonist. The alcoholic fraction of S. mangifera extract possesses beneficial effects on rheumatoid arthritis as well as anti-inflammatory potential, and can further can be used as a possible agent for novel target-based therapies for the management of arthritis.


Sign in / Sign up

Export Citation Format

Share Document