scholarly journals Three Constituents of Moringa oleifera Seeds Regulate Expression of Th17-Relevant Cytokines and Ameliorate TPA-Induced Psoriasis-Like Skin Lesions in Mice

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3256 ◽  
Author(s):  
Nuan Ma ◽  
Qin Tang ◽  
Wan-Ting Wu ◽  
Xin-An Huang ◽  
Qin Xu ◽  
...  

As a folk medicine, Moringa oleifera L. is used effectively to treat inflammatory conditions and skin diseases. However, its mechanism of action is not well understood, limiting its medical use. We isolated and identified three compounds, namely niazirin, marumoside A and sitosterol-3-O-β-d-glucoside, from the seeds of Moringa oleifera, and studied their effects on the expression of Th17-relevant cytokines (IL-12/IL-23 p40, IL-17A, IL-22 and IL-23 p19) using lipopolysaccharide-stimulated THP-1 cells. Additionally, as Th17 plays a critical role in the pathogenesis of psoriasis, we used a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced psoriasis-like skin lesion mouse model to study their potential therapeutic application in vivo. The compounds suppressed the expression of IL-12/IL-23 p40, IL-17A, IL-22 and IL-23 p19 in vitro, and in vivo they ameliorated psoriasis-like skin lesions, decreased IL-17A mRNA expression, and increased the expression of keratinocyte differentiation markers. To our knowledge, this is the first report regarding the mechanism and therapeutic application of Moringa oleifera seeds to treat psoriasis-like lesions in vivo.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chandrama Shrestha ◽  
Yuanyuan Tang ◽  
Hong Fan ◽  
Lusha Li ◽  
Qin Zeng ◽  
...  

Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1αis recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1αand the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1αactivation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1αand induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1αactivation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1αcomplex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1αcomplex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.


Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 338-340 ◽  
Author(s):  
KE Arfors ◽  
C Lundberg ◽  
L Lindbom ◽  
K Lundberg ◽  
PG Beatty ◽  
...  

Previous in vitro findings suggest a critical role for the polymorphonuclear leukocyte (PMN) membrane glycoprotein complex CD18 in PMN adherence and chemotaxis. We examined the effect of the murine monoclonal antibody (MoAb) 60.3, recognizing CD18, on induced PMN accumulation in vivo. Rabbits were pretreated with MoAb 60.3, and the chemotactic factors fMLP, leukotriene (LT)B4, and C5a, as well as histamine, were injected intradermally; 4 hours later, plasma leakage (125I-albumin) and the PMN accumulation (myeloperoxidase) were determined. Both PMN accumulation and PMN-dependent plasma leakage were abolished in the inflammatory skin lesions of rabbits pretreated with MoAb 60.3 as compared with control animals, whereas histamine-induced PMN-independent plasma leakage was unaffected. Intravital microscopy of the rabbit tenuissimus muscle revealed that MoAb 60.3 inhibited both PMN adherence in the venules and migration into the tissue following application of LTB4 and zymosan-activated serum (ZAS). Rolling of PMNs along the venular endothelium was unaffected. Thus, these experiments confirm and extend earlier in vitro findings of the critical role of the membrane glycoprotein complex, CD18, in PMN adherence and chemotaxis.


1993 ◽  
Vol 123 (4) ◽  
pp. 909-919 ◽  
Author(s):  
V Drozdoff ◽  
W J Pledger

In the epidermis, one of the earliest characterized events in keratinocyte differentiation is the coordinate induction of a pair of keratins specifically expressed in suprabasal cells, keratin 1 (K1) and keratin 10 (K10). Both in vivo and in vitro, extracellular calcium is necessary for several biochemical and structural changes during keratinocyte differentiation. However, it has been unclear if calcium serves as a differentiation signal in keratinocytes. In these studies, expression of suprabasal keratin mRNA and protein is used to test whether the initial differentiation of primary mouse keratinocytes in vitro is dependent on changes in the concentration of extracellular calcium. K1 mRNA was expressed at low levels in cultures of keratinocytes growing on plastic in 0.05 mM calcium but in attached cells was not further induced by increases in the concentration of extracellular calcium. Suspension of the keratinocytes into semi-solid medium induced a rapid and substantial increase in both expression of K1 mRNA and in the percentage of cells expressing suprabasal keratin proteins. The induction was unaffected by the concentration of calcium in the semi-solid medium and could not be enhanced by exposing attached cells to higher calcium before suspension. The induction of K1 mRNA could be inhibited by exposure of the keratinocytes to either EGF or fibronectin. These results suggest that commitment of mouse keratinocytes to terminal differentiation is independent of extracellular calcium and may be regulated primarily by extracellular factors other than calcium.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6052
Author(s):  
Gonçalo P. Rosa ◽  
Bruno J. C. Silva ◽  
Ana M. L. Seca ◽  
Laila M. Moujir ◽  
Maria Carmo Barreto

Terrestrial plants, due to their sessile nature, are highly exposed to environmental pressure and therefore need to produce very effective molecules that enable them to survive all the threats. Myrica and Morella (Myricaceae) are taxonomically close genera, which include species of trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine. For instance, in Chinese or Japanese folk medicine, they are used to treat diarrhea, digestive problems, headache, burns, and skin diseases. A wide array of compounds isolated from different parts of Myrica and/or Morella species possess several biological activities, like anticancer, antidiabetic, anti-obesity, and cardio-/neuro-/hepatoprotective activities, both in vitro and in vivo, with myricanol, myricitrin, quercitrin, and betulin being the most promising. There are still many other compounds isolated from both genera whose biological activities have not been evaluated, which represents an excellent opportunity to discover new applications for those compounds and valorize Morella/Myrica species.


2020 ◽  
Vol 21 (23) ◽  
pp. 9288
Author(s):  
Lucian Beer ◽  
Polina Kalinina ◽  
Martin Köcher ◽  
Maria Laggner ◽  
Markus Jeitler ◽  
...  

The role of microRNAs (miRNAs) during keratinocyte (KC) differentiation and in skin diseases with epidermal phenotypes has attracted strong interest over the past few years. However, combined mRNA and miRNA expression analyses to elucidate the intricate mRNA–miRNA networks of KCs at different stages of differentiation have not been performed yet. In the present study, we investigated the dynamics of miRNA and mRNA expression during KC differentiation in vitro and in normal and psoriatic epidermis. While we identified comparable numbers of up- and downregulated mRNAs (49% and 51%, respectively), miRNAs were predominantly upregulated (76% vs 24%) during KC differentiation. Further bioinformatics analyses suggested an important inhibitory role for miR-155 in KC differentiation, as it was repressed during KC differentiation in normal skin but strongly upregulated in the epidermis of psoriatic skin lesions. Mimicking the inflammatory milieu of psoriatic skin in vitro, we could show that the pro-inflammatory cytokines IL17, IL1β and INFγ synergistically upregulated miR-155 expression in KCs. Forced over-expression of miR-155 in human in vitro skin models specifically reduced the expression of loricrin (LOR) in KCs, indicating that miR-155 interferes with the establishment of a normal epidermal barrier. Together, our data indicate that downregulation of miR-155 during KC differentiation is a crucial step for epidermal barrier formation. Furthermore, its strong upregulation in psoriatic lesions suggests a contributing role of miR-155 in the altered keratinocyte differentiation observed in psoriasis. Therefore, miR-155 represents as a potential target for treating psoriatic skin lesions.


Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 338-340 ◽  
Author(s):  
KE Arfors ◽  
C Lundberg ◽  
L Lindbom ◽  
K Lundberg ◽  
PG Beatty ◽  
...  

Abstract Previous in vitro findings suggest a critical role for the polymorphonuclear leukocyte (PMN) membrane glycoprotein complex CD18 in PMN adherence and chemotaxis. We examined the effect of the murine monoclonal antibody (MoAb) 60.3, recognizing CD18, on induced PMN accumulation in vivo. Rabbits were pretreated with MoAb 60.3, and the chemotactic factors fMLP, leukotriene (LT)B4, and C5a, as well as histamine, were injected intradermally; 4 hours later, plasma leakage (125I-albumin) and the PMN accumulation (myeloperoxidase) were determined. Both PMN accumulation and PMN-dependent plasma leakage were abolished in the inflammatory skin lesions of rabbits pretreated with MoAb 60.3 as compared with control animals, whereas histamine-induced PMN-independent plasma leakage was unaffected. Intravital microscopy of the rabbit tenuissimus muscle revealed that MoAb 60.3 inhibited both PMN adherence in the venules and migration into the tissue following application of LTB4 and zymosan-activated serum (ZAS). Rolling of PMNs along the venular endothelium was unaffected. Thus, these experiments confirm and extend earlier in vitro findings of the critical role of the membrane glycoprotein complex, CD18, in PMN adherence and chemotaxis.


2007 ◽  
Vol 293 (6) ◽  
pp. C1824-C1833 ◽  
Author(s):  
Nicole E. Hastings ◽  
Michael B. Simmers ◽  
Oliver G. McDonald ◽  
Brian R. Wamhoff ◽  
Brett R. Blackman

Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle α-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle α-actin-CC(a/T)6GG (CArG) promoter region and decreased histone H4 acetylation. Conversely, SRF and histone H4 acetylation were enriched at the c- fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.


2020 ◽  
Vol 27 ◽  
Author(s):  
Leydianne Leite de Siqueira Patriota ◽  
Dayane Kelly Dias do Nascimento Santos ◽  
Bárbara Rafaela da Silva Barros ◽  
Lethícia Maria de Souza Aguiar ◽  
Yasmym Araújo Silva ◽  
...  

Background: Protease inhibitors have been isolated from plants and present several biological activities, including immunomod-ulatory action. Objective: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. Methods: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15–240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). Results: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15–30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as ΔΨm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. Conclusion: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


2020 ◽  
Vol 15 (3) ◽  
pp. 194-208
Author(s):  
Pravin Kumar ◽  
Dinesh Kumar Sharma ◽  
Mahendra Singh Ashawat

Atopic Dermatitis (AD) is a prolonged reverting skin ailment with characteristically distributed skin lesions. In the previous decades, researchers had shown a marked interest in AD due to its increased prevalence in developed countries. Although different strategies including biological and immune modulators are available for the treatment of AD, each has certain limitations. The researchers had shown considerable interest in the management of AD with herbal medicines. The establishment of herbal drugs for AD might eliminate local as well as systemic adverse effects associated with long term use of corticosteroids and also higher cost of therapy with biological drugs. The present review discusses the traditional East Asian herbal medicines and scientific data related to newer herbal extracts or compositions for the treatment of AD. In vivo animal models and in vitro cell cultures, investigated with herbal medicines to establish a possible role in AD treatment, have also been discussed in the paper. The paper also highlights the role of certain new approaches, i.e. pharmacopuncture, a combination of allopathic and herbal medicines; and novel carriers (liposomes, cubosomes) for herbal drugs on atopic skin. In conclusion, herbal medicines can be a better and safe, complementary and alternative treatment option for AD.


Sign in / Sign up

Export Citation Format

Share Document