scholarly journals Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 573 ◽  
Author(s):  
Maria G. Leichtweis ◽  
Carla Pereira ◽  
M.A. Prieto ◽  
Maria Filomena Barreiro ◽  
Lillian Barros ◽  
...  

An ultrasound rapid and low-cost procedure for anthocyanin-based colorants from Prunus spinosa L. fruit epicarp was developed, and the advantages were compared with conventional heat-based extraction. To obtain the conditions that maximize anthocyanins’ extraction, a response surface methodology was applied using the variables of time, temperature, and ethanol content, in the case of heat extraction, whereas for ultrasound assisted extraction, temperature was replaced by ultrasound power. Two anthocyanin compounds were identified by HPLC-DAD-ESI/MS—namely, cyanidin 3-rutinoside and peonidin 3-rutinoside. The responses used were the extraction yield and the content of the identified anthocyanins. Ultrasound extraction was the most effective method at 5.00 ± 0.15 min, 400.00 ± 32.00 W, and 47.98% ± 2.88% of ethanol obtaining 68.60% ± 2.06% of extracted residue, with an anthocyanin content of 18.17 mg/g (extract-basis) and 11.76 mg/g (epicarp-basis). Overall, a viable green process was achieved that could be used to support pilot-scale studies for industrial production of anthocyanin-based colorants from P. spinosa fruit epicarp.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2884
Author(s):  
Ceferino Carrera ◽  
María José Aliaño-González ◽  
Jaime Rodríguez-López ◽  
Marta Ferreiro-González ◽  
Fernando Ojeda-Copete ◽  
...  

Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lanqing Li ◽  
Mingxing Sun ◽  
Hui Zhou ◽  
Yun Zhou ◽  
Ping Chen ◽  
...  

A rapid and cleanup-free ultrasound-assisted extraction method is proposed for the simultaneous extraction of oxytetracycline, tetracycline, chlortetracycline, and doxycycline in manure. The analytes were determined using high-performance liquid chromatography with ultraviolet detector. The influence of several variables on the efficiency of the extraction procedure was investigated by single-factor experiments. The temperature, pH, and amount of extraction solution were selected for optimization experiment using response surface methodology. The calibration curves showed good linearity (R2>0.99) for all analytes in the range of 0.1–20 μg/mL. The four antibiotics were successfully extracted from manure with recoveries ranging from 81.89 to 92.42% and good reproducibility (RSD, <4.06%) under optimal conditions, which include 50 mL of McIlvaine buffer extraction solution (pH 7.15) mixed with 1 g of manure sample, extraction temperature of 40°C, extraction time of 10 min, and three extraction cycles. Method quantification limits of 1.75–2.32 mg/kg were obtained for the studied compounds. The proposed procedure demonstrated clear reductions in extraction time and elimination of cleanup steps. Finally, the applicability to tetracyclines antibiotics determination in real samples was evaluated through the successful determination of four target analytes in swine, cow manure, and mixture of animal manure with inorganic fertilizer.


2012 ◽  
Vol 610-613 ◽  
pp. 3410-3415
Author(s):  
Yu Qin Tang ◽  
Yi Tao Zhao

The purpose of this study was to select the optimum ultrasound-assisted extraction (UAE) conditions for the extraction of polysaccharides from Pleurotus eryngii (DC. ex Fr.) Que (P. eryngii ). The main factors that affect the extraction yield of polysaccharides such as solid:liquid ratio, ultrasonic power, extraction time and extraction temperature were studied individually. An orthogonal experiment was designed to optimize the extraction parameters. It was found that UAE method was a reliable, simple and effective method for fast extraction of polysaccharides from P. eryngii. The optimum UAE conditions were as followings: Solid:liquid ratio of 1:35, Ultrasonic power of 55 W, Extraction time of 30 min and extraction temperature of 45°C.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jingwei Hao ◽  
Jiahui Liu ◽  
Lei Zhang ◽  
Yunrong Jing ◽  
Yubin Ji

We successfully extracted isoliquiritigenin from Glycyrrhiza uralensis through the utilization of an ionic liquid-based ultrasonic-assisted extraction (ILUAE) approach. Briefly, we utilized the solution of 1-butyl-3-methylimidazolium bromide ([BMIM]Br) as solvent and optimized key ILUAE parameters such as solid-liquid ratios, concentrations of ionic liquids, and the times of ultrasonication. Based on a single-factor experiment, we utilized the response surface method (RSM) approach to optimize the extraction procedure. The approach revealed that the optimal energy consumption time was 120 min, with the ultrasonic extraction temperature of 60°C. Using these optimized parameters together with the solid-liquid ratio (dried G. uralensis powder: [BMIM]Br of 0.3 mol/L) of 1 : 16.163 and the [BMIM]Br of 0.3 mol/L, we achieved a 0.665 mg/g extraction yield. Overall, these findings thus indicate that we were able to effectively use ILUAE as an efficient approach to reliably extract isoliquiritigenin in a reproducible and environmentally friendly manner.


2021 ◽  
Vol 11 (14) ◽  
pp. 6416
Author(s):  
Miguel Giordano ◽  
José Pinela ◽  
Maria Inês Dias ◽  
Ricardo C. Calhelha ◽  
Dejan Stojković ◽  
...  

The nutritional quality of kiwifruit has been highlighted by several studies, while its peel is typically discarded as a by-product with no commercial value. This study was carried out to optimize the ultrasound-assisted extraction (UAE) of phenolic compounds from kiwi peel. Three independent variables (time (t), ultrasonic power (P) and ethanol concentration (EtOH)) were combined in a five-level central composite rotatable design coupled with the response surface methodology (RSM). The extraction yield determined gravimetrically and the content of phenolic compounds identified by HPLC-DAD-ESI/MSn (namely two quercetin glycosides, one catechin isomer and one B-type (epi)catechin dimer) were the experimental responses used in the optimization. The polynomial models were successfully fitted to the experimental data and used to determine the optimal UAE conditions. The sonication of the sample at 94.4 W for 14.8 min, using 68.4% ethanol, resulted in a maximum of 1.51 ± 0.04 mg of flavonoids per g of extract, a result that allowed the experimental validation of the predictive model. The kiwi peel extract obtained under optimized conditions showed somehow promising bioactive properties, including antioxidant and antimicrobial effects, and no toxicity to Vero cells. Overall, this study contributes to the valorization of kiwi peel as a low-cost raw material for the development of natural ingredients (such as food preservatives) and also to the resource-use efficiency and circular bioeconomy.


2012 ◽  
Vol 550-553 ◽  
pp. 1845-1851
Author(s):  
Yun Chen ◽  
Si Yu Yang ◽  
Ning Li ◽  
Li Juan Zhang ◽  
Yu Qian

Imperatorin and isoimperatorin are important components of Angelica dahurica with many beneficial functions to human health. In this study, an ultrasound-assisted extraction technique has been developed for the fast extraction of imperatorin and isoimperatorin from Angelica dahurica root. The high extraction yield of imperatorin and isoimperatorin was obtained under optimum extraction conditions: ultrasonication time 20 min, extraction temperature 30°C, ultrasound power 240w, ethanol concentration 80%, and ratio of solvent volume to sample weight 12:1 (ml/g), particle size 60 meshes. Compared to heat-reflux extraction, ultrasound-assisted extraction reduced extraction time and obtained higher percentage extracted of imperatorin and isoimperatorin. Scanning electron micrographs revealed that ultrasound could result in the destruction of cell walls, which increased the mass transfer rate of the solvents into the root materials


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Paulo Isaac Dias Assunção ◽  
Edemilson Cardoso da Conceição ◽  
Leonardo Luiz Borges ◽  
Joelma Abadia Marciano de Paula

A simple HPLC-UV method has been developed and validated for the quantification of ellagic acid (EA) in ethanol extracts of Eugenia uniflora L. (Myrtaceae) leaves. The ultrasound-assisted extraction (UAE) optimization was performed using a Box Behnken design (33) combined with response surface methodology to study the effects of the ethanol concentration (%, w/w), extraction time (minutes), and temperature (°C) on the EA concentration. The optimized results showed that the highest extraction yield of EA by UAE was 26.0 μg mL−1 when using 44% (w/w) ethanol as the solvent, 22 minutes as the extraction time, and 59°C as the extraction temperature. The concentration of EA in relation to the predicted value was 93.7%  ±  0.4. UAE showed a strong potential for EA extraction.


2017 ◽  
Vol 6 (2) ◽  
pp. 87-96
Author(s):  
Nita Aryanti ◽  
Aininu Nafiunisa ◽  
Dyah Hesti Wardhani ◽  
Andri Cahyo Kumoro

Anthocyanins are widely used as a food additive, and further study in production process development is required in order to obtain an efficient and superior process. This article presents the anthocyanin extraction by ultrasound-assisted extraction and the characterization of solid form anthocyanin extract. In addition, a simple kinetic analysis for the extraction process is investigated. Extraction was conducted by ultrasound-assisted extraction with a solute-solvent ratio of 1:4 and 1:8 at a temperature of 30OC, 40OC and 60OC. Anthocyanin content was analyzed by UV-VIS spectrophotometer. Drying process was performed by a freeze dryer with the addition of maltodextrin and followed by characterization of powder comprising moisture content, solubility and colour intensity. The result shows that the extraction temperature has an effect on anthocyanins extracted. Temperatures rise increased the diffusion coefficient and triggered the driving force of solids into the solvent. This result had a correlation with the second-order kinetic model where the rate of extraction increases along with temperature rise. Characterization of anthocyanin extracts in solid form showed that the addition of maltodextrin provided better results than the product without maltodextrin. The anthocyanin powder added with maltodextrin fulfils the Indonesian standards for food colouring powders, having a low moisture content (5.6%) and high solubility (91.4%). Moreover, colour intensity analysis of anthocyanin powder showed that the powder with maltodextrin has a tendency of a lighter colour with low value of L *, a * and b *.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1417
Author(s):  
Serena Carpentieri ◽  
Farid Soltanipour ◽  
Giovanna Ferrari ◽  
Gianpiero Pataro ◽  
Francesco Donsì

Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.


Author(s):  
Nithyakalyani K

Ficus benghalensis is one of those taboo plants in India, which was claimed to be possessed and have weird effects on human health. Apart from this ficus species has a great variety of chemical constituents and an abundant amount of antioxidants. Drying is the most critical stage of improving the activity or preventing the loss of chemical components from a drug. There is another stage of ensuring high chemical constituent content in the plant and that is the extraction procedure. So the point of focus in the current research is to find the effect of extraction method and drying on the anti-inflammatory potential of the plant. The result of the extraction method and drying method of the plant was investigated and found that the ultrasound-assisted extraction of the shade dried leaves was found to give the highest yield of flavonoids and activity.


Sign in / Sign up

Export Citation Format

Share Document