scholarly journals Facile Access to Fe(III)-Complexing Cyclic Hydroxamic Acids in a Three-Component Format

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 864 ◽  
Author(s):  
Evgeny Chupakhin ◽  
Olga Bakulina ◽  
Dmitry Dar’in ◽  
Mikhail Krasavin

Cyclic hydroxamic acids can be viewed as effective binders of soluble iron and can therefore be useful moieties for employing in compounds to treat iron overload disease. Alternatively, they are analogs of bacterial siderophores (iron-scavenging metabolites) and can find utility in designing antibiotic constructs for targeted delivery. An earlier described three-component variant of the Castagnoli—Cushman reaction of homophthalic acid (via in situ cyclodehydration to the respective anhydride) was extended to involve hydroxylamine in lieu of the amine component of the reaction. Using hydroxylamine acetate and O-benzylhydroxylamine was key to the success of this transformation due to greater solubility of the reagents in refluxing toluene (compared to hydrochloride salt). The developed protocol was found suitable for multigram-scale syntheses of N-hydroxy- and N-(benzyloxy)tetrahydroisoquinolonic acids. The cyclic hydroxamic acids synthesized in the newly developed format have been tested and shown to be efficient ligands for Fe3+, which makes them suitable candidates for the above-mentioned applications.

2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


2021 ◽  
Vol 2021 (11) ◽  
pp. 1768-1772
Author(s):  
Haiwen Meng ◽  
Kunhui Sun ◽  
Zhimin Xu ◽  
Lifang Tian ◽  
Yahui Wang

1988 ◽  
Vol 41 (1) ◽  
pp. 37 ◽  
Author(s):  
DS Black ◽  
KL Ooi

2-Cyano-1-pyrroline 1-oxides (1) could not be converted directly into the related cyclic thiohydroxamic acids (8). Potassium ethyl xanthate transformed nitrones (1) into the imidates (2). The cyclic hydroxamic acids (4) can be converted into the thiohydroxamic acids (8) via the methoxypyrrolidinones (5) and the methoxypyrrolidine thiones (6), making use of sodium p- tolylmercaptide as the demethylating agent. Reaction of methoxy thiones (6) with trimethylsilyl iodide led to the formation of the 2-methylthio-1-pyrroline 1-oxides (7).


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 175
Author(s):  
Priyanka Prakash ◽  
Wing-Hin Lee ◽  
Ching-Yee Loo ◽  
Hau Seung Jeremy Wong ◽  
Thaigarajan Parumasivam

Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.


2020 ◽  
Vol 21 (19) ◽  
pp. 7111 ◽  
Author(s):  
Yu-Jen Lu ◽  
Yu-Hsiang Lan ◽  
Chi-Cheng Chuang ◽  
Wan-Ting Lu ◽  
Li-Yang Chan ◽  
...  

In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab (CET)-conjugated GO (GO-CET/CPT11) for pH-responsive drug release after endocytosis by epidermal growth factor receptor (EGFR) over-expressed U87 human glioblastoma cells. The ultimate injectable drug/gene delivery system was designed by co-entrapping stomatin-like protein 2 (SLP2) short hairpin RNA (shRNA) and GO-CET/CPT11 in thermosensitive chitosan-g-poly(N-isopropylacrylamide) (CPN) polymer solution, which offers a hydrogel depot for localized, sustained delivery of the therapeutics after the in situ formation of CPN@GO-CET/CPT11@shRNA hydrogel. An optimal drug formulation was achieved by considering both the loading efficiency and loading content of CPT-11 on GO-CET. A sustained and controlled release behavior was found for CPT-11 and shRNA from CPN hydrogel. Confocal microscopy analysis confirmed the intracellular trafficking for the targeted delivery of CPT-11 through interactions of CET with EGFR on the U87 cell surface. The efficient transfection of U87 using SLP2 shRNA was achieved using CPN as a delivery milieu, possibly by the formation of shRNA/CPN polyplex after hydrogel degradation. In vitro cell culture experiments confirmed cell apoptosis induced by CPT-11 released from acid organelles in the cytoplasm by flow cytometry, as well as reduced SLP2 protein expression and inhibited cell migration due to gene silencing. Finally, in vivo therapeutic efficacy was demonstrated using the xenograft of U87 tumor-bearing nude mice through non-invasive intratumoral delivery of CPN@GO-CET/CPT11@shRNA by injection. Overall, we have demonstrated the novelty of this thermosensitive hydrogel to be an excellent depot for the co-delivery of anticancer drugs and siRNA. The in situ forming hydrogel will not only provide extended drug release but also combine the advantages offered by the chitosan-based copolymer structure for siRNA delivery to broaden treatment modalities in cancer therapy.


1972 ◽  
Vol 25 (11) ◽  
pp. 2429 ◽  
Author(s):  
DSC Black ◽  
RFC Brown ◽  
AM Wade

The synthesis of several seven-membered cyclic hydroxamic acids has been carried out in low yield. Reduction of diethyl 2-hydroxyiminoheptane-l,7-dioate afforded ethyl 1-hydroxy-7-oxohexahydroazepine-2-carboxylate, together with related acyclic products. The cobactin precursor 3-bromo-1-hydroxyhexahydro-azepin-2-one was obtained by the ring expansion of 2-bromocyclohexanone with benzenesulphonohydroxamic acid and also by the peracid oxidation of 6-bromo-7-ethoxy-3,4,5,6-tetrahydro-2H-azepine. The methyl and cinnamyl imidates of hexanolactam were oxidized by peracid to 1-hydroxyhexahydroazepin-2-one, in addition to the related imino- and nitroso-hexanoic esters. In a similar reaction, 1-hydroxypiperidin-2-one was obtained from 2-methoxy-3,4,5,6-tetrahydropyridine. During the course of these oxidation reactions, the intermediate oxaziridines 7-methoxy-8-oxa-1-azabicyclo[5,1,0]octane and 6-bromo-7-ethoxy-8-oxa-1-azabicyclo[5,1,0]octane were isolated and identified. The peraoid oxidation of ethyl N-cyclohexylbenzimidate yielded cyclohexylhydroxylamine and ethyl benzoate in reasonable yields. This reaction suggests a useful method for the conversion of a primary amine into the related hydroxylamine.


Sign in / Sign up

Export Citation Format

Share Document