scholarly journals Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1541 ◽  
Author(s):  
Luo ◽  
Dong

Natural products have played indispensable roles in drug development and biomedical research. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of fast-expanding natural products attribute to genome mining efforts in recent years. Most RiPP natural products were discovered from bacteria, yet many eukaryotic cyclic peptides turned out to be of RiPP origin. This review article presents recent advances in the discovery of eukaryotic RiPP natural products, the elucidation of their biosynthetic pathways, and the molecular basis for their biosynthetic enzyme catalysis.

2018 ◽  
Author(s):  
Shaozhou Zhu ◽  
Guojun Zheng

ABSTRACTRibosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly emerging group of natural products with diverse biological activity. Most of their biosynthetic mechanisms are well studied and the “genome mining” strategy based on homology has led to the unearthing of many new ribosomal natural products, including lantipeptides, lasso peptides, cyanobactins. These precursor-centric or biosynthetic protein-centric genome mining strategies have encouraged the discovery of RiPPs natural products. However, a limitation of these strategies is that the newly identified natural products are similar to the known products and novel families of RiPP pathways were overlooked by these strategies. In this work, we applied a transcription-factor centric genome mining strategy and diverse unique crosslinked RiPP gene clusters were predicted in several sequenced microorganisms. Our research could significantly expand the category of biosynthetic pathways of RiPP natural products and predict new resources for novel RiPPs.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42644-42681
Author(s):  
Manar Ahmed Fouad ◽  
Hamida Abdel-Hamid ◽  
Mohammed Salah Ayoup

We highlight the recent advances of the Ugi reaction in the last two decades from 2000–2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions.


2016 ◽  
Vol 113 (13) ◽  
pp. 3521-3526 ◽  
Author(s):  
Wei Ding ◽  
Wan-Qiu Liu ◽  
Youli Jia ◽  
Yongzhen Li ◽  
Wilfred A. van der Donk ◽  
...  

Production of ribosomally synthesized and posttranslationally modified peptides (RiPPs) has rarely been reported in fungi, even though organisms of this kingdom have a long history as a prolific source of natural products. Here we report an investigation of the phomopsins, antimitotic mycotoxins. We show that phomopsin is a fungal RiPP and demonstrate the widespread presence of a pathway for the biosynthesis of a family of fungal cyclic RiPPs, which we term dikaritins. We characterize PhomM as an S-adenosylmethionine–dependent α-N-methyltransferase that converts phomopsin A to anN,N-dimethylated congener (phomopsin E), and show that the methyltransferases involved in dikaritin biosynthesis have evolved differently and likely have broad substrate specificities. Genome mining studies identified eight previously unknown dikaritins in different strains, highlighting the untapped capacity of RiPP biosynthesis in fungi and setting the stage for investigating the biological activities and unknown biosynthetic transformations of this family of fungal natural products.


2021 ◽  
Author(s):  
◽  
Benjamin Baker

<p>The utilisation of natural products for treatment of human ailments has been rooted in various cultures for centuries. Extraction of natural products has been essential for the discovery of new drugs and inspiration for synthetic analogues. Since the success of penicillin, microbial natural products have been of interest. Genome mining of Thermogemmatisporastrain T81, a thermophile from the Taupo Volcanic Zone, found the potential for the production of novel ribosomally synthesised and post-translationally modified peptides (RiPPs). Previous work showed that T81 exhibited antimicrobial activity against a wide variety of extremophillic bacteria. Although the three thiopeptides encoded forin the genome of T81 have not been found, the lanthipeptide tikitericin has recently been isolated and described. Unfortunately tikitericin is produced in low quantities by T81 andbioactivity data has not yet been obtained. Because of its potential antimicrobial activity, different routes to produce it are of interest. The aim of this project wasto synthesisetikitericin by solid phase peptide synthesis. MS imaging was also utilised to search for the presence of tikitericin as an antimicrobial agent in situ.</p>


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3001026
Author(s):  
Alexander M. Kloosterman ◽  
Peter Cimermancic ◽  
Somayah S. Elsayed ◽  
Chao Du ◽  
Michalis Hadjithomas ◽  
...  

Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria.


2019 ◽  
Author(s):  
Bahar Behsaz ◽  
Hosein Mohimani ◽  
Alexey Gurevich ◽  
Andrey Prjibelski ◽  
Mark F. Fisher ◽  
...  

ABSTRACTCyclic and branch cyclic peptides (cyclopeptides) represent an important class of bioactive natural products that include many antibiotics and anti-tumor compounds. However, little is known about cyclopeptides in the human gut, despite the fact that humans are constantly exposed to them. To address this bottleneck, we developed the CycloNovo algorithm for de novo cyclopeptide sequencing that employs de Bruijn graphs, the workhorse of DNA sequencing algorithms. CycloNovo reconstructed many new cyclopeptides that we validated with transcriptome, metagenome, and genome mining analyses. Our benchmarking revealed a vast hidden cyclopeptidome in the human gut and other environments and suggested that CycloNovo offers a much-needed step-change for cyclopeptide discovery. Furthermore, CycloNovo revealed a wealth of anti-microbial cyclopeptides from food that survive the complete human gastrointestinal tract, raising the question of how these cyclopeptides might affect the human microbiome.SIGNIFICANCEThe golden age of antibiotics was followed by a decline in the pace of antibiotics discovery in the 1990s. The key prerequisite for the resurgence of antibiotics research is the development of a computational discovery pipeline for antibiotics sequencing. We describe such pipeline for cyclic and branch cyclic peptides (cyclopeptides) that represent an important class of bioactive natural products such as antibiotics and anti-tumor compounds. Our CycloNovo algorithm for cyclopeptide sequencing reconstructed many new cyclopeptides that we validated with transcriptome, metagenome, and genome mining analyses. CycloNovo revealed a wealth of anti-microbial cyclopeptides from food that survive the complete human gastrointestinal tract, raising the question of how these cyclopeptides might affect the human microbiome.


2021 ◽  
Author(s):  
◽  
Benjamin Baker

<p>The utilisation of natural products for treatment of human ailments has been rooted in various cultures for centuries. Extraction of natural products has been essential for the discovery of new drugs and inspiration for synthetic analogues. Since the success of penicillin, microbial natural products have been of interest. Genome mining of Thermogemmatisporastrain T81, a thermophile from the Taupo Volcanic Zone, found the potential for the production of novel ribosomally synthesised and post-translationally modified peptides (RiPPs). Previous work showed that T81 exhibited antimicrobial activity against a wide variety of extremophillic bacteria. Although the three thiopeptides encoded forin the genome of T81 have not been found, the lanthipeptide tikitericin has recently been isolated and described. Unfortunately tikitericin is produced in low quantities by T81 andbioactivity data has not yet been obtained. Because of its potential antimicrobial activity, different routes to produce it are of interest. The aim of this project wasto synthesisetikitericin by solid phase peptide synthesis. MS imaging was also utilised to search for the presence of tikitericin as an antimicrobial agent in situ.</p>


Author(s):  
Li Cao ◽  
Truc Do ◽  
A James Link

Abstract Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
J Li ◽  
X Tang ◽  
JJ Zhang ◽  
EC O'Neill ◽  
SM Mantovani ◽  
...  

Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Sign in / Sign up

Export Citation Format

Share Document