scholarly journals Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2041 ◽  
Author(s):  
Vasilisa Pedan ◽  
Martin Popp ◽  
Sascha Rohn ◽  
Matthias Nyfeler ◽  
Annette Bongartz

Olive oil is not only known for its pungent, bitter, and fruity taste, but also for its health potential, which is often hypothesized to depend on its phenolic compounds. One hundred extra virgin olive oil samples (monocultivaric as well as blends of varieties) were assessed with regard to their sensory properties and phenolic compound composition. Nineteen phenolic compounds have been determined and correlated with sensory data. In all olive oil samples, oleocanthal and oleacein were the most abundant phenolic compounds, with average amounts of 77.9 mg/kg and 41.8 mg/kg, respectively. The highest correlation coefficient between a sensory descriptor and the phenolic compounds was found for the bitter taste sensation and the total phenolic content with r = 0.72 and in particular, for 3,4-DHPEA-EA, with r = 0.57. Intensity plots were assessed for the three main sensory descriptors fruitiness, bitterness, pungency, and for the quality factor harmony, which is associated with the degree of ripeness aroma of olive oil. Positive correlations for the aroma descriptors freshly cut grass, leaves, and nuts, and the phenolic compounds were especially observed for oleoside 11-methylester and vanillic acid. The present study provides a comprehensive database of phenolic compounds in olive oils from six different varieties and seven countries.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2345 ◽  
Author(s):  
Irene Dini ◽  
Giulia Graziani ◽  
Anna Gaspari ◽  
Francesca Luisa Fedele ◽  
Andrea Sicari ◽  
...  

The health advantages of extra-virgin olive oil (EVOO) are ascribed mainly to the antioxidant ability of the phenolic compounds. Secoiridoids, hydroxytyrosol, tyrosol, phenolic acid, and flavones, are the main nutraceutical substances of EVOO. Applications of beneficial microbes and/or their metabolites impact the plant metabolome. In this study the effects of application of selected Trichoderma strains or their effectors (secondary metabolites) on the phenolic compounds content and antioxidant potential of the EVOOs have been evaluated. For this purpose, Trichoderma virens (strain GV41) and Trichoderma harzianum (strain T22), well-known biocontrol agents, and two their metabolites harzianic acid (HA) and 6-pentyl-α-pyrone (6PP) were been used to treat plants of Olea europaea var. Leccino and var. Carolea. Then the nutraceutical potential of EVOO was evaluated. Total phenolic content was estimated by Folin–Ciocalteau’s assay, metabolic profile by High-Resolution Mass spectroscopy (HRMS-Orbitrap), and antioxidant activity by DPPH and ABTS assays. Our results showed that in the cultivation of the olive tree, T22 and its metabolites improve the nutraceutical value of the EVOOs modulating the phenolic profile and improving antioxidants activity.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5000
Author(s):  
Nikolaos Kokras ◽  
Eleni Poulogiannopoulou ◽  
Marinos G. Sotiropoulos ◽  
Rafaella Paravatou ◽  
Eleni Goudani ◽  
...  

The aim of this study was to determine the cognitive and behavioral effects of extra virgin olive oil total phenolic content (TPC) and Sideritis (SID) extracts in female mice, and identify the associated neurochemical changes in the hippocampus and the prefrontal cortex. All animals received intraperitoneal low or high doses of TPC, SID or vehicle treatment for 7 days and were subjected to the Open Field (OF), Novel Object Recognition (NOR) and Tail Suspension Test (TST). The prefrontal cortex and hippocampus were dissected for analysis of neurotransmitters and aminoacids with high performance liquid chromatography with electrochemical detection (HPLC-ED). Both TPC doses enhanced vertical activity and center entries in the OF, which could indicate an anxiolytic-like effect. In addition, TPC enhanced non-spatial working memory and, in high doses, exerted antidepressant effects. On the other hand, high SID doses remarkably decreased the animals’ overall activity. Locomotor and exploratory activities were closely associated with cortical increases in serotonin turnover induced by both treatments. Cognitive performance was linked to glutamate level changes. Furthermore, TPC reduced cortical taurine levels, while SID reduced cortical aspartate levels. TPC seems to have promising cognitive, anxiolytic and antidepressant effects, whereas SID has sedative effects in high doses. Both extracts act in the brain, but their specific actions and properties merit further exploration.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4193
Author(s):  
Aline Gabrielle Alves de Carvalho ◽  
Lucía Olmo-García ◽  
Bruna Rachel Antunes Gaspar ◽  
Alegría Carrasco-Pancorbo ◽  
Vanessa Naciuk Castelo-Branco ◽  
...  

The production of extra virgin olive oil (EVOO) in Brazil developed quite recently, and information on commercial Brazilian EVOO’s typical features is very scarce. In just one of the previously published works on Brazilian olive oil, the assessed samples were commercially available. In this study, a comprehensive characterization of EVOO samples acquired at local stores (at Rio de Janeiro and Rio Grande do Sul, from the two most prevalent cultivars, Arbequina and Koroneiki) was carried out considering the most relevant quality parameters, antioxidant capacity, oxidative stability, total phenolic content, fatty acid composition, and minor component metabolic profiling. The latter included: (1) the determination of individual phenolic compounds (belonging to four diverse chemical classes) and triterpenic acids by means of a powerful multi-class reversed-phase LC-MS method; (2) the quantitative profiling of tocopherols, phytosterols, and pigments by normal-phase LC-DAD/fluorescence; and (3) the quantitative appraisal of the volatile pattern of the oils by solid-phase microextraction (SPME)-gas chromatography (GC)-MS. By applying these methods, the concentrations of approximately 70 minor compounds were determined in commercial EVOOs from Brazil. To the best of our knowledge, the content of a very large number of phenolic compounds of those determined in the current report (mainly secoiridoids), the three triterpenic acids (maslinic, betulinic, and oleanolic acids), and the individual chlorophyll derivatives had not been previously evaluated in Brazilian EVOOs. The present work provides a broad picture of the compositional profile and other parameters of relevance of selected commercial Brazilian EVOOs available on local markets, describing their typicity and most particular features, some of which are known to have potential impacts on consumers’ health.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 877
Author(s):  
Anallely López-Yerena ◽  
Antonia Ninot ◽  
Núria Jiménez-Ruiz ◽  
Julián Lozano-Castellón ◽  
Maria Pérez ◽  
...  

The ancient ‘Corbella’ olive variety from the center-north of Catalonia is being recovered to obtain quality extra-virgin olive oil (EVOO) with unique organoleptic properties. The aim of this work was to determine the effect of agronomic and technical factors on the phenolic fingerprint of EVOO and to establish the optimum harvesting time and crushing and malaxation conditions for ‘Corbella’ olives. Therefore, three different ripening indices (0.3, 1.2, and 3.2) and three crushing temperatures (10, 18, and 25 OC) were studied. Additionally, a factorial design to optimize the phenolic concentration of the EVOO was developed, applying a range of sieve diameters (4 and 6 mm), and malaxation time (30 and 60 min) and temperature (27, 32, and 37 °C). The phenolic profile was analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in a tandem detector. The level of secoiridoids, the major phenolic compounds in the oil, was higher when using olives harvested earlier. Oleuropein aglycone and ligstroside aglycone were degraded during crushing at high temperatures, resulting in the formation of oleacein and oleocanthal. The best processing conditions in terms of total phenolic content were found to be 30 min of malaxation at 37 OC, the crushing size not having any affect.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 246 ◽  
Author(s):  
Jessica del Pilar Ramírez-Anaya ◽  
Ma. Claudia Castañeda-Saucedo ◽  
Manuel Olalla-Herrera ◽  
Marina Villalón-Mir ◽  
Herminia López-García de la Serrana ◽  
...  

Extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O) were used for frying, boiling and sautéeing Mediterranean vegetables (potato, pumpkin, tomato and eggplant). Differences in antioxidant capacity (AC) (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric iron (FRAP), 2,2-azinobis-(3-ethylbensothiazoline)-6-sulphonic acid (ABTS)), total phenolic content (TPC) and individual phenols (high-performance liquid chromatography (HPLC)) in unused and used EVOO and water were determined. The water used to boil tomatoes showed the highest TPC value, whilst the lowest was found in the EVOO from the W/O used for boiling potatoes. After processing, the concentrations of phenols exclusive to EVOO diminished to different extents. There was a greater transfer of phenols from the vegetable to the oil when eggplant, tomato and pumpkin were cooked. W/O boiling enriched the water for most of the phenols analysed, such as chlorogenic acid and phenols exclusive to EVOO. The values of AC decreased or were maintained when fresh oil was used to cook the vegetables (raw > frying > sautéing > boiling). The water fraction was enriched in 6-hydroxy-2,5,7,8–tetramethyl-chroman-2-carboxylic acid (Trolox) equivalents following boiling, though to a greater extent when EVOO was added. Phenolic content and AC of EVOO decreased after cooking Mediterranean diet vegetables. Further, water was enriched after the boiling processes, particularly when oil was included.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2449 ◽  
Author(s):  
Panagiotis Diamantakos ◽  
Triada Giannara ◽  
Maria Skarkou ◽  
Eleni Melliou ◽  
Prokopios Magiatis

The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of the EVOO’s phenolic fraction and many contradictory results have been reported. Having as target to maximize the phenolic content of EVOO and its healthy properties we investigated the impact of harvest time, malaxation temperature, and malaxation duration on the concentration of individual phenols in extra virgin olive oil. Olive oil was prepared in a lab-scale olive mill from different varieties in Greece. The extraction process for cultivar (cv) Koroneiki samples was performed at five different harvest periods from the same trees with three different malaxation temperatures and five different malaxation duration times (N = 75). Similar types of experiments were also performed for other varieties: cv Athenolia (N = 20), cv Olympia (N = 3), cv Kalamata (N = 3), and cv Throubolia Aegean (N=3) in order to compare the changes in the phenolic profile during malaxation. The quantitative analysis of the olive oil samples with NMR showed that the total phenolic content has a negative correlation with the ripening degree and the malaxation time. The NMR data we collected helped us to quantitate not only the total phenolic content but also the concentration of the major phenolic compounds such as oleocanthal, oleacein, oleokoronal, and oleomissional. We noticed different trends for the concentration of these phenols during malaxation process and for different malaxation temperatures. The different trends of the concentration of the individual phenols during malaxation and the completely different behavior of each variety revealed possible biosynthetic formation steps for oleocanthal and oleacein and may explain the discrepancies reported from previous studies.


2020 ◽  
Vol 10 (1) ◽  
pp. 04-09
Author(s):  
Evangelos Giannakopoulos ◽  
Georgios Salachas ◽  
Dimitrios Zisimopoulos ◽  
Sofia-Anna Barla ◽  
Electra Kalaitzopoulou ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


ACTA IMEKO ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 22 ◽  
Author(s):  
Milena Bucar-Miklavcic ◽  
Terezija Golob ◽  
Vasilij Valencic ◽  
Erika Bester ◽  
Bojan Butinar ◽  
...  

The olive variety 'Istrska belica' is well known for its numerous positive properties, such as resistance to low temperature and high oil content. The aim was to determine the variations in the levels of phenolic compounds and sensory properties during storage of 'Istrska belica' virgin olive oil. The profile of the phenolic compounds and sensory properties of 'Istrska belica' olive oil were further compared with those for other varieties, including 'Leccino' and 'Maurino'. The content of phenolic compounds of the olive oils decreased after 1 year and 2 years of storage. After 2 years of storage, the levels of oleuropein and the ligstroside derivates significantly decreased, while the end-stage compounds tyrosol and hydroxytyrosol increased. These data show that after 1 year of storage, the 'Istrska belica' olive oil preserves similar intensities for bitterness and pungency, and similar oleuropein and ligstroside derivates levels. In contrast to the other oils analysed, the intensities of bitterness and pungency of 'Istrska belica' olive oil decreased greatly only after 2 years of storage. Moreover, the phenolic compounds content, and oleuropein and ligstroside derivates levels, and the intensities of bitterness and pungency were the highest in fresh 'Istrska belica' olive oil, compared to the other olive oils analysed. Overall, 'Istrska belica' olive oil has important advantages over olive oil from other varieties that are grown in the Istria region.


Sign in / Sign up

Export Citation Format

Share Document