scholarly journals Development of Palm Fatty Acid Distillate-Containing Medium for Biosurfactant Production by Pseudomonas sp. LM19

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2613 ◽  
Author(s):  
Abdul Hamid Nurfarahin ◽  
Mohd Shamzi Mohamed ◽  
Lai Yee Phang

High production costs of biosurfactants are mainly caused by the usage of the expensive substrate and long fermentation period which undermines their potential in bioremediation processes, food, and cosmetic industries even though they, owing to the biodegradability, lower toxicity, and raise specificity traits. One way to circumvent this is to improvise the formulation of biosurfactant-production medium by using cheaper substrate. A culture medium utilizing palm fatty acid distillate (PFAD), a palm oil refinery by-product, was first developed through one-factor-at-a-time (OFAT) technique and further refined by means of the statistical design method of factorial and response surface modeling to enhance the biosurfactant production from Pseudomonas sp. LM19. The results shows that, the optimized culture medium containing: 1.148% (v/v) PFAD; 4.054 g/L KH2PO4; 1.30 g/L yeast extract; 0.023 g/L sodium-EDTA; 1.057 g/L MgSO4·7H2O; 0.75 g/L K2HPO4; 0.20 g/L CaCl2·2H2O; 0.080 g/L FeCl3·6H2O gave the maximum biosurfactant productivity. This study demonstrated that the cell concentration and biosurfactant productivity could reach up to 8.5 × 109 CFU/mL and 0.346 g/L/day, respectively after seven days of growth, which were comparable to the values predicted by an RSM regression model, i.e., 8.4 × 109 CFU/mL and 0.347 g/L/day, respectively. Eleven rhamnolipid congeners were detected, in which dirhamnolipid accounted for 58% and monorhamnolipid was 42%. All in all, manipulation of palm oil by-products proved to be a feasible substrate for increasing the biosurfactant production about 3.55-fold as shown in this study.

2020 ◽  
Vol 3 (2) ◽  
pp. 170-181
Author(s):  
Angela Wulansari ◽  
Teti Estiasih ◽  
Yunianta Yunianta

Palm fruit as raw material of palm oil is the main commodity of Indonesian agriculture. Palm fatty acid distillate (PFAD) is a by-product of palm oil refinery process in deodorization stage. PFAD contained bioactive compounds such as vitamin E, phytosterols, and squalene. Vitamin E, phytosterols, and squalene have knows for its hypocholesterolemic effect and cardio protector. Bioactive compounds of PFAD can be separated from its fatty acid using saponification reaction. Saponification of PFAD produced unsaponifiable matter (USM) which was rich in bioactive compounds. Food fortification is aimed to enhance the nutrition quality of food for specific reason. The fortificant can be macronutrient or micronutrient. USM of PFAD potentially become food product fortificant which will give hypocholesterolemic effect. This review is discussed about hypocholesterolemic effect of each bioactive compounds in USM of PFAD and the potential of USM as food fortificant espsecially for food with hypocholesterolemic effect.


2019 ◽  
Vol 2 (2) ◽  
pp. 99-110
Author(s):  
J.S. Sabarman ◽  
E.H. Legowo ◽  
D.I. Widiputri ◽  
A.R. Siregar

Increasing concern in fossil fuel depletion and CO2 emissions create an urgent need for biofuel substitution. Bio-jet fuel is a possible alternative for conventional jet fuels which currently accounts for 2% of the world’s CO2 emission. Palm Fatty Acid Distillate (PFAD) is the byproduct of palm oil refinery process, which has a potential to become a promising raw material for the synthesis of bioavtur due to its high free fatty acid content. The oil-to-jet pathway is a possible route to produce bioavtur from PFAD, which includes hydrotreating, hydrocracking, and hydroisomerization processes. This research aims to investigate the hydrotreating and hydrocracking processes. The parameters that were investigated are temperature, solvent to PFAD ratio, catalyst loading, and pressure. The parameters variations were as follows: the temperature at 350oC and 400oC, the pressure at 40 bar and 32.5 bar, the solvent to PFAD ratio at 2:1 and 1:1, and the catalyst loading (%wt) at 1%, 2%, and 3%. Presulfided NiMo/γ-Al2O3 PIDO 120 1.3 was used for one-step hydrotreating and hydrocracking processes. Results indicated that the 400oC provided better free fatty acid (FFA) conversion. FFA is also almost completely removed when the catalyst used is 3% weight. Solvent to PFAD ratio affected the FFA conversion marginally, while higher catalyst loading (3%) improved the FFA conversion. Gas chromatography results show that the hydrocarbon chains are successfully hydrocracked into C9-C17. The best selectivity of the product to bioavtur range was calculated at 68.99%. Solvent ratio affects the hydrocracking more significantly than the catalyst loading. One sample with temperature operation 400oC and solvent to PFAD ratio 1:1 was in the range of conventional avtur density. With the method used in this study, it can be concluded that PFAD is a promising raw material for bioavtur. Keywords: Palm Fatty Acid Distillate (PFAD), hydrotreating, hydrocracking, bioavtur


2020 ◽  
Vol 17 (2) ◽  
pp. 1079-1084
Author(s):  
Zarkoni Azis ◽  
Bambang Heru Susanto ◽  
Mohammad Nasikin

Gasoline is liquid hydrocarbon fuel used for spark-ignition engine. Most of gasoline production is carried out in the petroleum oil refinery through several stages of process and fluid catalytic cracking (FCC) is an important process that can convert some of heavy oil fractions like vacuum gasoil (VGO) and residue to be cracked into gasoline and lighter products. Consumption of gasoline for transportation fuel in Indonesia is higher than its production capability, so this gap has compelled to search the alternative process route using renewable feedstock. Coprocessing of petroleum gasoil with crude palm oil in fluid catalytic cracking had been investigated previously resulting in lower value of conversion as well as gasoline yield when applying co-feeds at higher level of vegetable oils. Cracking feedstock containing triglyceride and fatty acid from vegetable oil is supposed to be the other possibility as a reason of conversion and yield changes. The research work is aimed to find out another way for gasoline yield upgrading in fluid catalytic cracking process using available catalyst by coprocessing of VGO with refined bleached deodorized palm oil (RBDPO) and small amount of palm fatty acid distillate (PFAD). The experimental work of cracking reaction was performed on fluid-bed reactor of ACE unit at temperature of 530 °C, nearly atmospheric pressure and catalyst-oil ratio of 5.5 g/g. Three kind of oil feeds were tested namely VGO, VGO mixed with 5% RBDPO and VGO added with 5% RBDPO-PFAD of mixing ratio 9:1. The cracking reaction results in gaseous and liquid products. The gaseous phase product was analyzed using online gas chromatography to detect light hydrocarbon components of C1, C2 and H2 as dry gas and hydrocarbon components of C3 and C4 as LPG. The liquid item was investigated through gas chromatography of simulated distillation to separate fluid components including gasoline, light cycle oil (LCO) and slurry oil. Carbon material placed on catalyst through cracking reaction was analyzed at regeneration step of spent catalyst passed through catalytic converter by online Infrared method. Coprocessing of VGO with 5% RBDPO and VGO with 5% RBDPO-PFAD can alter conversion and product yields. The presence of triglyceride and fatty acid in oil feeds during cracking reaction influence signifi- cantly to gasoline enhancement. Although this coprocessing work has shown initial phenomenon in accordance with hypothesis, further investigation is necessary to explore deeper in order to obtain an optimized process condition by various levels of coprocessing feed.


2020 ◽  
Vol 1655 ◽  
pp. 012030
Author(s):  
Sri Rezeki Muria ◽  
Yelmida Azis ◽  
Khairat ◽  
Desy Erika Putri ◽  
Zultiniar ◽  
...  

2021 ◽  
Vol 882 (1) ◽  
pp. 012038
Author(s):  
Sihyun Lee ◽  
Jiho Yoo ◽  
Datin Fatia Umar

Abstract The utilization of low-rank coal is restricted by such factors as high moisture content, low heating value, high propensity to low-temperature oxidation, spontaneous combustion, etc. Some coal upgrading technologies to reduce the moisture content have been developed, one of them is coal upgrading palm oil technology using palm fatty acid distillate as an additive to keep the stability of moisture content in the coal after the process. To study the possibility of the upgrading technology application in Indonesia, some studies have been conducted. The study covered coal characterization such as proximate, ultimate and calorific value, palm fatty acid distillate for stabilization of upgraded low-rank coal and coal upgrading by coal upgrading palm oil technology in laboratory scale. By using 7 Indonesian low-rank coals and 4 palm fatty acid distillates, it is confirmed that the coal upgrading palm oil technology is effective to reduce the moisture content and increase the calorific value of low rank coal.


2011 ◽  
Vol 72 (3) ◽  
Author(s):  
Norliza BT. Abdul Rahman ◽  
Sam Yet ◽  
Noorhisham Tan Kofli

Palm Oil Fatty Acid Distillate (PFAD) is a by-product from palm oil refinery process and normally used as ingredient of making candles, soap and others. Recently, many researchers have been carried out to diversify the utilisation of PFAD in industry. Among others is the enzimatically production of sugar ester using PFAD as substrate. However, limited kinetic and simulation data hindered the effort of large scale production. Hence, this study was executed to determine the kinetic parameters of the esterification process based on the simplified Ping-pong Bi-Bi model under the temperature range of 30°C ~ 45°C where immobilised lipase (Lipozyme 1M) was used as biocatalyst and isopropyl alcohol was used as solvent. The reaction was conducted in a cylinder resemble a fluidised reactor. Kinetic parameters derived from the experiments were used to simulate the production of sugar ester. The optimum temperature for the production of sugar ester was found to be at 40°C. The experimental results deviate slightly from the simulation results with error percentage of less than 11%. The model can be used to predict the production of sugar ester when the concentrations of the reactants are varied.


2021 ◽  
Vol 12 (6) ◽  
pp. 8144-8151

A study on factors affecting biodiesel quality of agricultural by-products, namely palm oil derived using palm fatty acid distillate (PFAD), collected from the Oleen Palm Oil industrial refining plant. This PFAD showed free fatty acid content and a saponification value of 88.4 % and 204 mg KOH/g, respectively. An acid catalyst was successfully used to produce biodiesel in the esterification reaction, and a 97.11% conversion to biodiesel based on the European Standard EN 14214:2003 was achieved under the conditions (PFAD to methanol molar ratio 1:3.71 with 1.834 % H2SO4 catalyzed at 121 °C for 15 minutes). Overall, this novel process achieved highly enhanced FAME (95.82% to 97.31%) with a significantly increased reaction time (10 to 30 minutes) and catalyst requirements (1.834 % H2SO4).


2013 ◽  
Vol 388 ◽  
pp. 63-67
Author(s):  
Samion Syahrullail ◽  
Muhammad Amirul Abdul Rahman

Palm fatty acid distillate (PFAD) has potential to be used as a lubricant. PFAD is a by-product from palm oil refinery, and it is classified as non-edible oil. However, vegetable oil has poor thermal performance and high oxidation rate. In this paper, the tribological performance of PFAD in different working temperature was investigated by using four-ball tribotester. Tests were conducted at temperatures 50oC, 75oC, 100oC and 125oC, under a normal load of 40 kg for one (1) hour. The rotational speed was set at 1200rpm. Similar tests were conducted using industrial hydraulic oil as a comparison lubricant. Analyses were focused on the coefficient of friction (CoF), wear scar diameter (WSD) and worn surface observation. Results show that coefficient of friction and wear were increased with the increment of temperature. However, palm fatty acid distillate show a better performance in term of friction reduction compared to industrial hydraulic oil.


2013 ◽  
Vol 5 (9) ◽  
pp. 1153-1159 ◽  
Author(s):  
Teti Estiasih ◽  
Kgs. Ahmadi ◽  
Tri Dewanti Widyaningsih ◽  
Jaya Mahar Maligan ◽  
Ahmad Zaki Mubarok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document