scholarly journals Recent Advances in the Discovery of Novel Antiprotozoal Agents

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3886 ◽  
Author(s):  
Lee ◽  
Kim ◽  
Hayat ◽  
Shin

Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012–2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.

Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 10 ◽  
Author(s):  
Sujogya Kumar Panda ◽  
Walter Luyten

The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.


2020 ◽  
Vol 26 (36) ◽  
pp. 4658-4674 ◽  
Author(s):  
Christina Kannigadu ◽  
David. D. N'Da

: Infectious diseases commonly occur in tropical and sub-tropical countries. The pathogens of such diseases are able to multiply in human hosts, warranting their continual survival. Infections that are commonplace include malaria, chagas, trypanosomiasis, giardiasis, amoebiasis, toxoplasmosis and leishmaniasis. Malaria is known to cause symptoms, such as high fever, chills, nausea and vomiting, whereas chagas disease causes enlarged lymph glands, muscle pain, swelling and chest pain. People suffering from African trypanosomiasis may experience severe headaches, irritability, extreme fatigue and swollen lymph nodes. As an infectious disease progresses, the human host may also experience personality changes and neurologic problems. If left untreated, most of these diseases can lead to death. : Parasites, microbes and bacteria are increasingly adapting and generating strains that are resistant to current clinical drugs. Drug resistance creates an urgency for the development of new drugs to treat these infections. Nitro containing drugs, such as chloramphenicol, metronidazole, tinidazole and secnidazole had been banned for use as antiparasitic agents due to their toxicity. However, recent discoveries of nitrocontaining anti-tuberculosis drugs, i.e. delamanid and pretonamid, and the repurposing of flexinidazole for use in combination with eflornithine for the treatment of human trypanosomiasis, have ignited interest in nitroaromatic scaffolds as viable sources of potential anti-infective agents. : This review highlights the differences between old and new nitration methodologies. It furthermore offers insights into recent advances in the development of nitroaromatics as anti-infective drugs.


Parasitology ◽  
1989 ◽  
Vol 98 (S1) ◽  
pp. S69-S86 ◽  
Author(s):  
W. I. Morrison

SummaryParasitic diseases inflict major losses on livestock production throughout the world. Currently, control of the diseases relies largely on prophylactic or therapeutic application of anti-parasitic drugs. In many instances, these measures are only partially effective. Moreover, they must be applied frequently, are therefore costly and time-consuming, and lead to the selection of drug resistance within the parasite populations. Thus, it has been recognized for several decades that effective methods of vaccination against parasitic diseases would have a major impact on livestock production. However, despite considerable efforts over the last 30 years, only a few parasite vaccines are currently in use and all of these involve the administration of live organisms.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5562
Author(s):  
Yucheng Cao ◽  
Kaiyi Wang ◽  
Si Xu ◽  
Lingtan Kong ◽  
Yi Bi ◽  
...  

Ginseng is one of the most widely consumed herbs in the world and plays an important role in counteracting fatigue and alleviating stress. The main active substances of ginseng are its ginsenosides. Ocotillol-type triterpenoid is a remarkably effective ginsenoside from Vietnamese ginseng that has received attention because of its potential antibacterial, anticancer and anti-inflammatory properties, among others. The semisynthesis, modification and biological activities of ocotillol-type compounds have been extensively studied in recent years. The aim of this review is to summarize semisynthesis, modification and pharmacological activities of ocotillol-type compounds. The structure–activity relationship studies of these compounds were reported. This summary should prove useful information for drug exploration of ocotillol-type derivatives.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Paul Barrow ◽  
Jean Claude Dujardin ◽  
Nicolas Fasel ◽  
Alex D. Greenwood ◽  
Klaus Osterrieder ◽  
...  

Abstract Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.


2019 ◽  
Vol 20 (22) ◽  
pp. 5748 ◽  
Author(s):  
Capela ◽  
Moreira ◽  
Lopes

Protozoan diseases continue to be a worldwide social and economic health problem. Increased drug resistance, emerging cross resistance, and lack of new drugs with novel mechanisms of action significantly reduce the effectiveness of current antiprotozoal therapies. While drug resistance associated to anti-infective agents is a reality, society seems to remain unaware of its proportions and consequences. Parasites usually develops ingenious and innovative mechanisms to achieve drug resistance, which requires more research and investment to fight it. In this review, drug resistance developed by protozoan parasites Plasmodium, Leishmania, and Trypanosoma will be discussed.


2020 ◽  
Vol 8 (6) ◽  
pp. 950
Author(s):  
Magali Van den Kerkhof ◽  
Yann Sterckx ◽  
Philippe Leprohon ◽  
Louis Maes ◽  
Guy Caljon

Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different ‘omics’ approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.


1992 ◽  
Vol 38 ◽  
pp. 27-39

Ann Bishop was an eminent protozoologist and parasitologist who spent almost her entire career in Cambridge where she was a Fellow of Girton College for nearly 60 years. Her main work was concerned with the development of drug resistance in the protozoan parasites that cause the disease malaria, still among the most important agents of mortality in the world today.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Salma Sameh ◽  
Eman Al-Sayed ◽  
Rola M. Labib ◽  
Abdel Nasser Singab

It is believed that many degenerative diseases are due to oxidative stress. In view of the limited drugs available for treating degenerative diseases, natural products represent a promising therapeutic strategy in the search for new and effective candidates for treating degenerative diseases. This review focuses on the genusSpondiaswhich is widely used in traditional medicine for the treatment of many diseases.Spondiasis a genus of flowering plants belonging to the cashew family (Anacardiaceae). This genus comprises 18 species distributed across tropical regions in the world. A variety of bioactive phytochemical constituents were isolated from different plants belonging to the genusSpondias. Diverse pharmacological activities were reported for the genusSpondiasincluding cytotoxic, antioxidant, ulcer protective, hepatoprotective, anti-inflammatory, antiarthritic, and antidementia effects. These attributes indicate their potential to treat various degenerative diseases. The aim of this review is to draw attention to the unexplored potential of phytochemicals obtained fromSpondiasspecies, thereby contributing to the development of new therapeutic alternatives that may improve the health of people suffering from degenerative diseases and other health problems.


Sign in / Sign up

Export Citation Format

Share Document