scholarly journals The Synthesis, Characterization, Cytotoxic Activity Assessment and Structure–Activity Relationship of 4-Aryl-6-(2,5-dichlorothiophen-3-yl)-2-methoxypyridine-3-carbonitriles

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4072
Author(s):  
Al-Refai ◽  
Ibrahim ◽  
Azmi ◽  
Osman ◽  
Bakar ◽  
...  

A series of 2-methoxypyridine-3-carbonitrile (5a–i)-bearing aryl substituents were successfully synthesized in good yields by the condensation of chalcones (4a–i) with malononitrile in basic medium. The condensation process, in most cases, offers a route to a variety of methoxypyridine derivatives (6a–g) as side products in poor yields. All new compounds were fully characterized using different spectroscopic methods. Mass ESI-HMRS measurements were also performed. Furthermore, these compounds were screened for their in vitro cytotoxicity activities against three cancer cell lines; namely, those of the liver (line HepG2), prostate (line DU145) and breast (line MBA-MB-231). The cytotoxicity assessment revealed that compounds 5d, 5g, 5h and 5i exhibit promising antiproliferative effects (IC50 1–5 µM) against those three cancer cell lines.

2019 ◽  
Vol 48 (2) ◽  
pp. 728-740 ◽  
Author(s):  
Leila Tabrizi ◽  
Lukman O. Olasunkanmi ◽  
Olatomide A. Fadare

The cyclometalated ruthenium(ii) complex was synthesized and studied for cytotoxicity. The interaction of Ru(ii) complex with COX-2 was studied by experimental and molecular docking.


Polyhedron ◽  
2014 ◽  
Vol 68 ◽  
pp. 312-318 ◽  
Author(s):  
Melina A. Mondelli ◽  
Angelica E. Graminha ◽  
Rodrigo S. Corrêa ◽  
Monize M. da Silva ◽  
Andréa P. Carnizello ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 12506-12506 ◽  
Author(s):  
O. Vafa ◽  
S. Kharki ◽  
J. Vielmetter ◽  
A. Chamberlain ◽  
P. Hammond ◽  
...  

12506 Background: The epithelial cell adhesion molecule (EpCAM), also known as epithelial protein 2 (EGP-2) or 17–1A antigen, is a trans-membrane protein expressed on the surfaces of most carcinomas, including those of pancreatic, colorectal, prostate, breast, kidney, lung, and ovarian origins. Moderate affinity antibodies (Abs) such as 17–1A (Kd ∼ 10−7 nM) have been safe in humans albeit with limited clinical efficacy. Attempts to improve clinical efficacy by enhancing antigen affinity (Kd ∼ 10−9 nM) have led to serious clinical toxicity, including pancreatitis. These observations raise the question of whether a moderate affinity Ab with enhanced effector function will be both safe and clinically efficacious. Methods: We applied our proprietary XmAb™ technologies to humanize the 17–1A variable domain and engineer a human IgG1 Fc domain to increase affinity for the activating receptor FcγRIIIa. Ab binding to Ep-CAM or to Fc receptors was tested with Biacore and/or AlphaScreen binding assays. In vitro cytotoxic activity against representative cancer cell lines was measured with Antibody Dependent Cell-mediated Cytotoxicity (ADCC) assays, using human PBMC as effector cells. Results: Humanized anti-EpCAM Abs have affinity for EpCAM similar to the parent 17–1A. Affinity for the activating FcγRIIIa was increased 100-fold relative to a control Ab with an IgG1 Fc domain. As expected, these Abs exhibit dramatically enhanced ADCC against multiple cancer cell lines relative to 17–1A and IgG1 control Abs. Despite their moderate affinity for EpCAM, these novel Abs have in vitro cytotoxicity comparable to the high affinity Ab ING-1. CDC activities of these Abs were similar to chimeric 17–1A. Conclusions: We have demonstrated that antibodies with moderate affinity for EpCAM and increased FcγRIIIa affinity exhibit superior cancer cell killing via an ADCC mechanism. The humanized nature and the increased cytotoxicity of anti-EpCAM XmAb™ antibodies make them promising candidates for clinical development of a novel pan-carcinoma Ab that is superior to 17–1A. [Table: see text]


2019 ◽  
Author(s):  
Macarena Siri ◽  
Maria Julieta Fernandez Ruocco ◽  
Estefanía Achilli ◽  
Malvina Pizzuto ◽  
Juan F. Delgado ◽  
...  

AbstractA γ–irradiated bovine albumin serum based nanoparticle was characterised structurally, and functionally. The nanoparticle was characterised by A.F.M, D.L.S, zeta potential, T.E.M., gel-electrophoresis, spectroscopy (UV-Vis, Fluorescence, FT-IR, and CD). Its stability was studied under adverse experimental conditions: pH values, chaotropic agents, and ionic strength and stability studies against time were mainly carried out by fluorescence spectroscopy following the changes in the tryptophan environment in the nanoparticle. Its function was studied by the interaction of the NP with the hydrophobic drug Emodin was studied. The binding and kinetic properties of the obtained complex were tested by biophysical methods as well as its toxicity in tumour cells.According to its biophysics, the nanoparticle is a spherical nanosized vehicle with a hydrodynamic diameter of 70 nm. Data obtained describe the nanoparticle alone as nontoxic for cancer cell lines. When combined with Emodin, the bioconjugate proved to be more active on MCF-7 and PC-3 cancer cell lines than the nanoparticle alone. No haemolytic activity was found when tested against ex vivo red blood cells. The stability of the albumin nanoparticle is based on a competition between short-range attraction forces and long-range repulsion forces. The nanoparticle showed similar behaviour as albumin against pH while improving its stability in urea and tween 80. It was stable up to 15 days and presented no protein degradation in solutions up to 2 M salt concentration. Significantly, the albumin aggregate preserves the main activity-function of albumin and improved characteristics as an excellent carrier of molecules.Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document