scholarly journals Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4420 ◽  
Author(s):  
Phu Cao Ngoc ◽  
Laurent Leclercq ◽  
Jean-Christophe Rossi ◽  
Isabelle Desvignes ◽  
Jasmine Hertzog ◽  
...  

Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.

Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1478
Author(s):  
Phu Cao-Ngoc ◽  
Laurent Leclercq ◽  
Jean-Christophe Rossi ◽  
Jasmine Hertzog ◽  
Anne-Sylvie Tixier ◽  
...  

The water-based extraction of bioactive components from flavonoid-rich medicinal plants is a key step that should be better investigated. This is especially true when dealing with easy-to-use home-made conditions of extractions, which are known to be a bottleneck in the course for a better control and optimization of the daily uptake of active components from medicinal plants. In this work, the water-based extraction of Blackcurrant (Ribes nigrum) leaves (BC) and Chrysanthellum americanum (CA), known to have complementary pharmacological properties, was studied and compared with a previous work performed on the extraction of Hawthorn (Crataegus, HAW). Various extraction modes in water (infusion, percolation, maceration, ultrasounds, microwaves) were compared for the extraction of bioactive principles contained in BC and CA in terms of extraction yield, of amount of flavonoids, phenolic compounds, and proanthocyanidin oligomers, and of UHPLC profiles of the extracted compounds. The qualitative and quantitative aspects of the extraction, in addition to the kinetic of extraction, were studied. The optimized easy-to-use-at-home extraction protocol developed for HAW was found very efficient to easily extract bioactive components from BC and CA plants. UHPLC-ESI-MS and high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were also implemented to get more qualitative information on the specific and common chemical compositions of the three plants (including HAW). Their antihyaluronidase, antioxidant, and antihypertensive activities were also determined and compared, demonstrating similar activities as the reference compound for some of these plants.


2020 ◽  
Vol 4 (4) ◽  
pp. 1747-1753 ◽  
Author(s):  
Yuanyuan Ma ◽  
Wenjie Zang ◽  
Afriyanti Sumboja ◽  
Lu Mao ◽  
Ximeng Liu ◽  
...  

Hollow structuring of active components is an effective strategy to improve the kinetics of oxygen electrode catalysts, arising from the increased the active surface area, the defects on the exposed surface, and the accessible active sites.


Sign in / Sign up

Export Citation Format

Share Document