scholarly journals Recent Advances in the Discovery of CK2 Allosteric Inhibitors: From Traditional Screening to Structure-Based Design

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 870 ◽  
Author(s):  
Xiaolan Chen ◽  
Chunqiong Li ◽  
Dada Wang ◽  
Yu Chen ◽  
Na Zhang

Protein kinase (CK2) has emerged as an attractive cancer therapeutic target and recent efforts have been made to develop its inhibitors. However, the development of selective inhibitors remains challenging because of the highly conserved ATP-binding pocket (orthosteric site) of kinase family. As an alternative strategy, allosteric inhibitors, by targeting the much more diversified allosteric site relative to the conserved ATP-binding site, achieve better pharmacological advantages than orthosteric inhibitors. Traditional serendipitous screening and structure-based design are robust tools for the discovery of CK2 allosteric inhibitors. In this review, we summarize the recent advances in the identification of CK2 allosteric inhibitors. Firstly, we briefly present the CK2 allosteric sites. Then, the allosteric inhibitors targeting the well-elucidated allosteric sites (α/β interface, αD pocket and interface between the Glycine-rich loop and αC-helix) are highlighted in the discovery process and possible binding modes with the allosteric sites are described. This study is expected to provide valuable clues for the design of CK2 allosteric inhibitors.

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 237 ◽  
Author(s):  
Chunqiong Li ◽  
Xuewen Zhang ◽  
Na Zhang ◽  
Yue Zhou ◽  
Guohui Sun ◽  
...  

Casein kinase II (CK2) is considered as an attractive cancer therapeutic target, and recent efforts have been made to develop its ATP-competitive inhibitors. However, achieving selectivity with respect to related kinases remains challenging due to the highly conserved ATP-binding pocket of kinases. Allosteric inhibitors, by targeting the much more diversified allosteric site relative to the highly conserved ATP-binding pocket, might be a promising strategy with the enhanced selectivity and reduced toxicity than ATP-competitive inhibitors. The previous studies have highlighted the traditional serendipitousity of discovering allosteric inhibitors owing to the complicate allosteric modulation. In this current study, we identified the novel allosteric inhibitors of CK2α by combing structure-based virtual screening and biological evaluation methods. The structure-based pharmacophore model was built based on the crystal structure of CK2α-compound 15 complex. The ChemBridge fragment library was searched by evaluating the fit values of these molecules with the optimized pharmacophore model, as well as the binding affinity of the CK2α-ligand complexes predicted by Alloscore web server. Six hits forming the holistic interaction mechanism with the αD pocket were retained after pharmacophore- and Alloscore-based screening for biological test. Compound 3 was found to be the most potent non-ATP competitive CK2α inhibitor (IC50 = 13.0 μM) with the anti-proliferative activity on A549 cancer cells (IC50 = 23.1 μM). Our results provide new clues for further development of CK2 allosteric inhibitors as anti-cancer hits.


ChemBioChem ◽  
2007 ◽  
Vol 8 (15) ◽  
pp. 1804-1809 ◽  
Author(s):  
Roberto Battistutta ◽  
Marco Mazzorana ◽  
Laura Cendron ◽  
Andrea Bortolato ◽  
Stefania Sarno ◽  
...  

2021 ◽  
Author(s):  
Sonjiala Jackson Hotchkiss ◽  
Maria Carmen Mulero ◽  
Garrett J. Chan ◽  
Tapan Biswas ◽  
Smarajit Polley ◽  
...  

ABSTRACTIκB kinase 2/β (IKK2) is a critical regulator of inflammation which is inducibly activated by a host of stimuli. Aberrant activation of IKK2 is the leading cause of most inflammatory diseases and many associated cancers. Efforts to prevent these diseases by small-molecule inhibitors of IKK2 activity have not been successful. Most inhibitors developed for IKK2 are ATP-competitive, and they are toxic in vivo due to their off-target effects. Here we focused on identifying inhibitors to block IKK2 activity from an allosteric site, not the ATP-binding pocket. Using virtual screening, we first identified several candidate allosteric sites and screened for potential small-molecule binders, and then selected candidates inhibitory to IKK2 activity using cell-based functional assays. Hydrogen deuterium exchange coupled to mass-spectrometry (HDX-MS) and MS-MS assays revealed that a class of benzoyl conjugates of pyrrolidinedione covalently bound to a site located at the interface of the kinase domain (KD) and the helical domain (SDD), and inhibited IKK2 activation allosterically by preventing phosphorylation of its activation loop serines. Additionally, this class of inhibitor partially blocks IKK2’s catalytic activity by enhancing dynamics within the ATP binding pocket and likely the general active site. Hydrogen deuterium exchange (HDX) experiments further revealed that while binding of substrate ATP perturbs only the local structure surrounding its binding site, binding to ATP-competitive or allosteric inhibitors induces structural perturbations in an expansive area including the helical domain. We propose that these allosteric sites can act as specific targets for the development of novel potent IKK inhibitors.SIGNIFICANCEAberrant activation of IKK2 is the leading cause of most inflammatory diseases and many associated cancers. Most inhibitors developed for IKK2 are ATP-competitive, and they are toxic in vivo due to their off-target effects. By combination of virtual screening and cell-based functional assays, we identified small-molecule binders of the class of benzoyl conjugates of pyrrolidinedione that block IKK2 activity from an allosteric site through covalent attachment and could be specific only for IKK2. HDX-MS and MS-MS assays identified a binding pocket with a ‘Cys-Cys motif’ for these inhibitors, and revealed specific differences in IKK2 dynamics upon binding to substrate ATP vs ATP-competitive and allosteric inhibitors. Present work provides a framework for the development of allosteric inhibitors to combat IKK2-induced diseases inhibitors.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


Author(s):  
Afsar Ali Mian ◽  
Isabella Haberbosch ◽  
Hazem Khamaisie ◽  
Abed Agbarya ◽  
Larissa Pietsch ◽  
...  

AbstractResistance remains the major clinical challenge for the therapy of Philadelphia chromosome–positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common “gatekeeper” mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph− cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia–like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.


2010 ◽  
Vol 84 (10) ◽  
pp. 5391-5403 ◽  
Author(s):  
Einari A. Niskanen ◽  
Teemu O. Ihalainen ◽  
Olli Kalliolinna ◽  
Milla M. Häkkinen ◽  
Maija Vihinen-Ranta

ABSTRACT The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP.


2004 ◽  
Vol 279 (36) ◽  
pp. 37779-37788 ◽  
Author(s):  
Stein Roosbeek ◽  
Frank Peelman ◽  
Annick Verhee ◽  
Christine Labeur ◽  
Hans Caster ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Akira Karasawa ◽  
Toshimitsu Kawate

The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.


Author(s):  
John S. Sack ◽  
Mian Gao ◽  
Susan E. Kiefer ◽  
Joseph E. Myers ◽  
John A. Newitt ◽  
...  

Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase involved in the phosphorylation of MAP proteins that regulate microtubule dynamics. Abnormal activity of MARK4 has been proposed to contribute to neurofibrillary tangle formation in Alzheimer's disease. The crystal structure of the catalytic and ubiquitin-associated domains of MARK4 with a potent pyrazolopyrimidine inhibitor has been determined to 2.8 Å resolution with anRworkof 22.8%. The overall structure of MARK4 is similar to those of the other known MARK isoforms. The inhibitor is located in the ATP-binding site, with the pyrazolopyrimidine group interacting with the inter-lobe hinge region while the aminocyclohexane moiety interacts with the catalytic loop and the DFG motif, forcing the activation loop out of the ATP-binding pocket.


Author(s):  
Sailu Sarvagalla ◽  
Mohane Selvaraj Coumar

Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.


Sign in / Sign up

Export Citation Format

Share Document