scholarly journals Isolation and Antibacterial Activity of Indole Alkaloids from Pseudomonas aeruginosa UWI-1

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3744
Author(s):  
Antonio Ramkissoon ◽  
Mohindra Seepersaud ◽  
Anderson Maxwell ◽  
Jayaraj Jayaraman ◽  
Adesh Ramsubhag

In this study, we report the first isolation of three antibiotic indole alkaloid compounds from a Pseudomonad bacterium, Pseudomonas aeruginosa UWI-1. The bacterium was batch fermented in a modified Luria Broth medium and compounds were solvent extracted and isolated by bioassay-guided fractionation. The three compounds were identified as (1) tris(1H-indol-3-yl) methylium, (2) bis(indol-3-yl) phenylmethane, and (3) indolo (2, 1b) quinazoline-6, 12 dione. A combination of 1D and 2D NMR, high-resolution mass spectrometry data and comparison from related data from the literature was used to determine the chemical structures of the compounds. Compounds 1–3 were evaluated in vitro for their antimicrobial activities against a wide range of microorganisms using the broth microdilution technique. Compounds 1 and 2 displayed antibacterial activity against only Gram-positive pathogens, although 1 had significantly lower minimum inhibitory concentration (MIC) values than 2. Compound 3 displayed potent broad-spectrum antimicrobial activity against a range of Gram positive and negative bacteria. Several genes identified from the genome of P. aeruginosa UWI-1 were postulated to contribute to the biosynthesis of these compounds and we attempted to outline a possible route for bacterial synthesis. This study demonstrated the extended metabolic capability of Pseudomonas aeruginosa in synthesizing new chemotypes of bioactive compounds.

2020 ◽  
Vol 83 (2) ◽  
pp. 331-337
Author(s):  
WENYUE WANG ◽  
RUI WANG ◽  
GUIJU ZHANG ◽  
FANGLI CHEN ◽  
BAOCAI XU

ABSTRACT Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry. HIGHLIGHTS


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Olayinka O. Ajani ◽  
Oluwole B. Familoni ◽  
Feipeng Wu ◽  
Johnbull O. Echeme ◽  
Zheng Sujiang

Sulfonamide drugs which have brought about an antibiotic revolution in medicine are associated with a wide range of biological activities. We have synthesized a series of α-tolylsulfonamide, 1–11 and their substituted N,N-diethyl-2-(phenylmethylsulfonamido) alkanamide derivatives, 12–22 in improved and excellent yields in aqueous medium at room temperature through highly economical synthetic routes. The chemical structures of the synthesized compounds 1–22 were confirmed by analytical and spectral data such as IR, 1H- and 13C-NMR, and mass spectra. The in vitro antibacterial activity of these compounds along with standard clinical reference, streptomycin, was investigated on two key targeted organisms. It was observed that 1-(benzylsulfonyl)pyrrolidine-2-carboxylic acid, 2 emerged as the most active compound against Staphylococcus aureus at MIC value of 1.8 μg/mL while 4-(3-(diethylamino)-3-oxo-2-(phenylmethylsulfonamido) propyl)phenyl phenylmethanesulfonate, 22 was the most active sulfonamide scaffold on Escherichia coli at MIC value of 12.5 μg/mL.


Author(s):  
Youzhou Liu ◽  
Chen Dai ◽  
Yaqiu Zhou ◽  
Junqing Qiao ◽  
Bao Tang ◽  
...  

Pseudomonas chlororaphis YL-1 has extensive antimicrobial activities against phytopathogens, and its genome harbors pyoverdine (PVD) biosynthesis gene cluster. The alternative sigma factor PvdS in Pseudomonas aeruginosa PAO1, acts as a critical regulator in response to iron starvation. The assembly of the PVD backbone starts with peptide synthetase enzyme PvdL. PvdF catalyzes formylation of L-OH-Orn to produce L-N5-hydroxyornithine. Here, we describe the characterization of PVD production in YL-1 and its antimicrobial activity as compared with its PVD-deficient mutants ΔpvdS, ΔpvdF, and ΔpvdL, that were obtained using a sacB-based site-specific mutagenesis strategy. Using in vitro methods, we examined the effect of exogenous iron under low-iron conditions and iron-chelating agent under iron-sufficient conditions on PVD production, antibacterial activity, and the relative expression of PVD transcription factor gene pvdS in YL-1. We found that strain YL-1, mutant ΔpvdF, and complemented strain ΔpvdS(pUCP26-pvdS) produced visible PVDs and demonstrated a wide range of inhibitory effects against Gram-negative and Gram-positive bacteria in vitro under low-iron conditions, and that with the increase of iron its PVD production and antibacterial activity were reduced. The antibacterial compounds produced by strain YL-1 in low-iron conditions were PVDs based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Moreover, the antibacterial activity observed in vitro was correlated with in vivo control efficacies of strain YL-1 against rice bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Collectively, PVDs are responsible for the antibacterial activities of strain YL-1 under both natural and induced low-iron conditions. IMPORTANCE: The results demonstrated that PVDs are essential for the broad-spectrum antibacterial activities of strain YL-1 against both Gram-positive and Gram-negative bacteria in low-iron conditions. Our findings also highlight the effect of exogenous iron on the production of PVD and the importance of this bacterial product in bacterial interactions. As a biocontrol agent, PVDs can directly inhibit the proliferation of the tested bacteria in addition to participating in iron competition.


10.3823/819 ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Fatima El Malki ◽  
Kamal Eddaraji ◽  
Rajae Alloudane ◽  
Hassane Greche ◽  
Haiat Essalmani ◽  
...  

Introduction: Medicinal plants are plentiful of bioactive molecules effective against multi-resistance bacteria. The aims of this study were to assess the in vitro antimicrobial activities of essential oils extracted from three Moroccan aromatic plants. Methodology: Analysis of essential oils of Origanum compactum, Rosmarinus officinalis and Pelargonium asperum, collected from different localities in Morocco, were performed using a GC-MS spectrophotometry. Antibacterial activity was evaluated in vitro for five clinical multi-resistant isolates. Results: Origanum showed strong antibacterial activity against tested strains except Pseudomonas aeruginosa while Rosmarinum showed a bactericidal effect against Acinetobacter baumanii, Escherichia coli and Staphylococcus aureus. Pelargonium presented only slight growth inhibition of Staphylococcus aureus on solid medium, but provided bactericidal effect against Acinetobacter baumanii and Staphylococcus aureus. Interestingly, fractions F7 and F8 of Pelargonium which represented only 0.3% and 0.1% of the total mass were found bactericidal respectively against Klebsiella pneumoniae and Pseudomonas aeruginosa. Conclusions: Ours results showed that the antimicrobial activities were variables depending on the chemical composition of essential oils, the fraction used and the microorganism tested.Essential oils fractionation allows detection of bioactive substances, especially those owning antimicrobial activity, present in small quantities.


1999 ◽  
Vol 43 (5) ◽  
pp. 1077-1084 ◽  
Author(s):  
Masahiro Takahata ◽  
Junichi Mitsuyama ◽  
Yoshiko Yamashiro ◽  
Minoru Yonezawa ◽  
Harumi Araki ◽  
...  

ABSTRACT The in vitro and in vivo activities of T-3811ME, a novel des-F(6)-quinolone, were evaluated in comparison with those of some fluoroquinolones, including a newly developed one, trovafloxacin. T-3811, a free base of T-3811ME, showed a wide range of antimicrobial spectra, including activities against Chlamydia trachomatis, Mycoplasma pneumoniae, andMycobacterium tuberculosis. In particular, T-3811 exhibited potent activity against various gram-positive cocci, with MICs at which 90% of the isolates are inhibited (MIC90s) of 0.025 to 6.25 μg/ml. T-3811 was the most active agent against methicillin-resistant Staphylococcus aureus and streptococci, including penicillin-resistant Streptococcus pneumoniae (PRSP). T-3811 also showed potent activity against quinolone-resistant gram-positive cocci with GyrA and ParC (GrlA) mutations. The activity of T-3811 against members of the familyEnterobacteriaceae and nonfermentative gram-negative rods was comparable to that of trovafloxacin. In common with other fluoroquinolones, T-3811 was highly active against Haemophilus influenzae, Moraxella catarrhalis, andLegionella sp., with MIC90s of 0.0125 to 0.1 μg/ml. T-3811 showed a potent activity against anaerobic bacteria, such as Bacteroides fragilis and Clostridium difficile. T-3811 was the most active agent against C. trachomatis (MIC, 0.008 μg/ml) and M. pneumoniae(MIC90, 0.0313 μg/ml). The activity of T-3811 againstM. tuberculosis (MIC90, 0.0625 μg/ml) was potent and superior to that of trovafloxacin. In experimental systemic infection with a GrlA mutant of S. aureus and experimental pneumonia with PRSP in mice, T-3811ME showed excellent therapeutic efficacy in oral and subcutaneous administrations.


2002 ◽  
Vol 46 (1) ◽  
pp. 234-238 ◽  
Author(s):  
Matteo Bassetti ◽  
Louise M. Dembry ◽  
Patricia A. Farrel ◽  
Deborah A. Callan ◽  
Vincent T. Andriole

ABSTRACT The in vitro antibacterial activity of BMS-284756 was compared to those of ciprofloxacin, gatifloxacin, moxifloxacin, ceftriaxone, imipenem, piperacillin-tazobactam, and amoxicillin-clavulanic acid against 492 gram-positive clinical isolates. BMS-284756 was the most-active agent against Streptococcus pneumoniae, Streptococcus viridans, beta-hemolytic streptococci, methicillin-sensitive and -resistant Staphylococcus aureus, methicillin-sensitive and -resistant coagulase-negative staphylococci, and enterococci.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Séverine Boisard ◽  
Anne-Marie Le Ray ◽  
Anne Landreau ◽  
Marie Kempf ◽  
Viviane Cassisa ◽  
...  

During this study, thein vitroantifungal and antibacterial activities of different extracts (aqueous and organic) obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains:Candida albicans, C. glabrata, andAspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains includingStaphylococcus aureus. Organic extracts showed a significant antifungal activity againstC. albicansandC. glabrata(MIC80between 16 and 31 µg/mL) but only a weak activity towardsA. fumigatus(MIC80= 250 µg/mL). DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially againstS. aureus(SA) and several of its methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains (MIC10030–97 µg/mL). A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.


Sign in / Sign up

Export Citation Format

Share Document