scholarly journals Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4267
Author(s):  
Valeriana Cesarini ◽  
Chiara Scopa ◽  
Domenico Alessandro Silvestris ◽  
Andrea Scafidi ◽  
Valerio Petrera ◽  
...  

Glioblastoma (GBM) is the most aggressive, infiltrative, and lethal brain tumor in humans. Despite the extensive advancement in the knowledge about tumor progression and treatment over the last few years, the prognosis of GBM is still very poor due to the difficulty of targeting drugs or anticancer molecules to GBM cells. The major challenge in improving GBM treatment implicates the development of a targeted drug delivery system, capable of crossing the blood–brain barrier (BBB) and specifically targeting GBM cells. Aptamers possess many characteristics that make them ideal novel therapeutic agents for the treatment of GBM. They are short single-stranded nucleic acids (RNA or ssDNA) able to bind to a molecular target with high affinity and specificity. Several GBM-targeting aptamers have been developed for imaging, tumor cell isolation from biopsies, and drug/anticancer molecule delivery to the tumor cells. Due to their properties (low immunogenicity, long stability, and toxicity), a large number of aptamers have been selected against GBM biomarkers and tested in GBM cell lines, while only a few of them have also been tested in in vivo models of GBM. Herein, we specifically focus on aptamers tested in GBM in vivo models that can be considered as new diagnostic and/or therapeutic tools for GBM patients’ treatment.

2020 ◽  
Vol 17 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Yuanyuan Li ◽  
Mohammad Ishraq Zafar ◽  
Xiaotong Wang ◽  
Xiaofang Ding ◽  
Honggang Li

Aim: To investigate the application of Scrotal Heat Stress (SHS) and Pulsed Unfocused Ultrasound (PuFUS) to explore Blood-Testis Barrier (BTB) permeability in adult mice. Background: The BTB provides a stable microenvironment and a unique immune barrier for spermatogenesis. Meanwhile, it blocks macromolecular substances access, including therapeutic agents and antibodies, thereby it decreases the therapeutic or immunocontraception effects. Objectives: To determine the viability of these physical approaches in delivering macromolecular substances into seminiferous tubules. Material & Methods: Mice were subjected to receive single SHS intervention at 39°C, 41°C, or 43°C for 30 min. Whereas, mice received the PuFUS intervention at 1.75w/cm2, 1.25w/cm2, and 2.5w/cm2 for 2 min, 5 min, and 10 min, respectively. The Biotin and macromolecular substances (IgG, IgM, and exosomes) were separately injected into the testicular interstitium at different times following SHS or PuFUS interventions, to observe their penetration through BTB into seminiferous tubules. Results: As detected by Biotin tracer, the BTB opening started from day-2 following the SHS and lasted for more than three days, whereas the BTB opening started from 1.5h following PuFUS and lasted up to 24h. Apparent penetration of IgG, IgM, and exosomes into seminiferous tubules was observed after five days of the SHS at 43°C, but none at 39°C, or any conditions tested with PuFUS. Conclusion: The current results indicate that SHS at 43°C comparatively has the potential for delivering macromolecular substances into seminiferous tubules, whereas the PuFUS could be a novel, quick, and mild approach to open the BTB. These strategies might be useful for targeted drug delivery into testicular seminiferous tubules. However, further studies are warranted to validate our findings.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Sign in / Sign up

Export Citation Format

Share Document