scholarly journals Synthesis, Internalization and Visualization of N-(4-Carbomethoxy) Pyrrolidone Terminated PAMAM [G5:G3-TREN] Tecto(dendrimers) in Mammalian Cells

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4406
Author(s):  
Maciej Studzian ◽  
Paula Działak ◽  
Łukasz Pułaski ◽  
David M. Hedstrand ◽  
Donald A. Tomalia ◽  
...  

Tecto(dendrimers) are well-defined, dendrimer cluster type covalent structures. In this article, we present the synthesis of such a PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer). This tecto(dendrimer) exhibits nontraditional intrinsic luminescence (NTIL; excitation 376 nm; emission 455 nm) that has been attributed to three fluorescent components characterized by different fluorescence lifetimes. Furthermore, it has been shown that this PAMAM [G5:G3-(TREN)]-N-(4-carbomethoxy) pyrrolidone terminated tecto(dendrimer) is able to form a polyplex with double stranded DNA, and is nontoxic for HeLa and HMEC-1 cells up to a concentration of 10 mg/mL, even though it accumulates in endosomal compartments as demonstrated by its unique NTIL emission properties. Many of the above features would portend the proposed use of this tecto(dendrimer) as an efficient transfection agent. Quite surprisingly, transfection activity could not be demonstrated in HeLa cells, and the possible reasons are discussed in the article.

Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


2002 ◽  
Vol 70 (9) ◽  
pp. 4925-4935 ◽  
Author(s):  
Spencer A. Leigh ◽  
Kim S. Wise

ABSTRACT Initial adherence interactions between mycoplasmas and mammalian cells are important for host colonization and may contribute to subsequent pathogenic processes. Despite significant progress toward understanding the role of specialized, complex tip structures in the adherence of some mycoplasmas, particularly those that infect humans, less is known about adhesins through which other mycoplasmas of this host bind to diverse cell types, even though simpler surface components are likely to be involved. We show by flow cytometric analysis that a soluble recombinant fusion protein (FP29), representing the abundant P29 surface lipoprotein of Mycoplasma fermentans, binds human HeLa cells and inhibits M. fermentans binding to these cells, in both a quantitative and a saturable manner, whereas analogous fusion proteins representing other mycoplasma surface proteins did not. Constructs representing nested N- or C-terminal truncations of FP29 allowed initial mapping of this specific adherence function to a central region of the P29 sequence containing a 36-amino-acid disulfide loop. A derivative of FP29 containing a mutation converting one participating Cys to Ser, precluding intrachain disulfide bond formation, retained full activity. Together these results suggest that the direct interaction of M. fermentans with a ligand on the HeLa cell surface involves a limited segment of the P29 surface lipoprotein and requires neither the disulfide bond nor the contribution of adjacent portions of the protein. Earlier results indicating phase-variable display of monoclonal antibody surface epitopes on P29, now recognized to be outside this ligand binding region, raise the possibility that variation of mycoplasma surface architecture might alter the presentation of the binding region and the adherence phenotype. Preliminary results further indicated that FP29 could inhibit binding to HeLa cells by Mycoplasma hominis, a distinct human mycoplasma species displaying the phase-variable adhesin Vaa, but not that by Mycoplasma capricolum, an organism infecting caprine species. This result raises the additional, testable possibility that a common host cell ligand for two human mycoplasma species may be recognized through structurally dissimilar adhesins that undergo phase variation by two distinct mechanisms, governing protein expression (Vaa) or surface masking (P29).


1992 ◽  
Vol 12 (1) ◽  
pp. 164-171
Author(s):  
M J Matunis ◽  
W M Michael ◽  
G Dreyfuss

At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.


2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


1977 ◽  
Vol 146 (2) ◽  
pp. 535-546 ◽  
Author(s):  
GT Keusch ◽  
M Jacewicz

The binding of ShigeUa dysenteriae 1 cytotoxin to HeLa cells in culture and to isolated rat liver cell membranes was studied by means of an indirect consumption assay of toxicity from the medium, or by determination of cytotoxicity to the HeLa cell monolayer. Both liver cell membranes and HeLa cells removed toxicity from the medium during incubation, in contrast to WI-38 and Y-1 mouse adrenal tumor cells, both of which neither bound nor were affected by the toxin. Uptake of toxin was directly related to concentration of membranes added, time,and temperature, and indirectly related to the ionic strength of the buffer used. The chemical nature of the membrane receptor was characterized by using three principal approaches: (a) enzymatic sensitivity; (b) competitive inhibition and (c) receptor blockade studies. The receptor was destroyed by proteolytic enzymes, phospholipases (which markedly altered the gross appearance of the membrane preparation) and by lysozyme, but not by a variety of other enzymes. Of 28 carbohydrate and glycoprotein haptens studied, including cholera toxin and ganglioside, only the chitin oligosaccharide lysozyme substrates, per N-acetylated chitotriose, chitotetraose, and chitopentaose were effective competitive inhibitors. Greatest inhibition was found with the trimer, N, N', N" triacetyl chitotriose. Of three lectins studied as possible receptor blockers, including phytohemagglutinin, concanavalin A, and wheat germ agglutinin, only the latter, which is known to possess specific binding affinity for N, N', N" triacetyl chitotriose, was able to block toxin uptake. Evidence from all three approaches indicate, therefore, existence of a glycoprotein toxin receptor on mammalian cells, with involvement of oligomeric β1{arrow}4-1inked N-acetyl glucosamine in the receptor. This receptor is clearly distinct from the G(M1) ganglioside thought to be involved in the binding of cholera toxin to the cell membrane of a variety of cell types susceptible to its action.


1987 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
F L Lin ◽  
K M Sperle ◽  
N L Sternberg

We have previously proposed a model to account for the high levels of homologous recombination that can occur during the introduction of DNA into mammalian cells (F.-L. Lin, K. Sperle, and N. Sternberg, Mol. Cell. Biol. 4:1020-1034, 1984). An essential feature of that model is that linear molecules with ends appropriately located between homologous DNA segments are efficient substrates for an exonuclease that acts in a 5'----3' direction. That process generates complementary single strands that pair in homologous regions to produce an intermediate that is processed efficiently to a recombinant molecule. An alternative model, in which strand degradation occurs in the 3'----5' direction, is also possible. In this report, we describe experiments that tested several of the essential features of the model. We first confirmed and extended our previous results with double-stranded DNA substrates containing truncated herpesvirus thymidine kinase (tk) genes (tk delta 5' and tk delta 3'). The results illustrate the importance of the location of double-strand breaks in the successful reconstruction of the tk gene by recombination. We next transformed cells with pairs of single-stranded DNAs containing truncated tk genes which should anneal in cells to generate the recombination intermediates predicted by the two alternative models. One of the intermediates would be the favored substrate in our original 5'----3' degradative model and the other would be the favored substrate in the alternative 3'----5' degradative model. Our results indicate that the intermediate favored by the 3'----5' model is 10 to 20 times more efficient in generating recombinant tk genes than is the other intermediate.


1992 ◽  
Vol 12 (1) ◽  
pp. 164-171 ◽  
Author(s):  
M J Matunis ◽  
W M Michael ◽  
G Dreyfuss

At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.


2009 ◽  
Vol 37 (3) ◽  
pp. 535-538 ◽  
Author(s):  
Tomas Lindahl ◽  
Deborah E. Barnes ◽  
Yun-Gui Yang ◽  
Peter Robins

The major DNA-specific 3′–5′ exonuclease of mammalian cells is TREX1 (3′ repair exonuclease 1; previously called DNase III). The human enzyme is encoded by a single exon and, like many 3′ exonucleases, exists as a homodimer. TREX1 degrades ssDNA (single-stranded DNA) more efficiently than dsDNA (double-stranded DNA), and its catalytic properties are similar to those of Escherichia coli exonuclease X. However, TREX1 is only found in mammals and has an extended C-terminal domain containing a leucine-rich sequence required for its association with the endoplasmic reticulum. In normal S-phase and also in response to genotoxic stress, TREX1 at least partly redistributes to the cell nucleus. In a collaborative project, we have demonstrated TREX1 enzyme deficiency in Aicardi–Goutières syndrome. Subsequently, we have shown that AGS1 cells exhibit chronic ATM (ataxia telangiectasia mutated)-dependent checkpoint activation, and these TREX1-deficient cells accumulate ssDNA fragments of a distinct size generated during DNA replication. Other groups have shown that the syndromes of familial chilblain lupus as well as systemic lupus erythematosus, and the distinct neurovascular disorder retinal vasculopathy with cerebral leukodystrophy, can be caused by dominant mutations at different sites within the TREX1 gene.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1332-1332
Author(s):  
Rodrigo T. Calado ◽  
Solomon A. Graf ◽  
Neal S. Young

Abstract Telomeres are the very ends of chromosomes and protect the genome from recombination, end-to-end-fusion, and recognition as damaged DNA. Telomeres are eroded with each cell division, eventually reaching such critically short length as to cause cell cycle arrest, apoptosis, or genomic instability. In most highly proliferative cells, including hematopoietic stem cells and T lymphocytes, telomere attrition is countered by telomere extension by telomerase reverse transcriptase complex. The majority of cancer cells also express telomerase, which maintains telomere length and allows indefinite cell proliferation. However, about 10% of tumors maintain telomere length in the absence of telomerase by mechanisms collectively termed alternative lengthening of telomeres (ALT). ALT mainly acts through asymmetrical exchange of telomeric material between chromosomes or sister chromatids, producing one daughter-cell with short telomeres and a limited life-span and its sister with long telomeres and higher proliferative capacity. To date, ALT has only been reported in cancer cells or through genetic engineering of mammalian cells. Here we investigated whether ALT mechanisms were active in hematopoietic cells using chromosome orientation fluorescent in situ hybridization (CO-FISH). In standard FISH, a telomeric probe produces fours signals per chromosome, one at each end of the two chromatids. Using CO-FISH, the newly synthesized DNA strand is fragmented by BrdU incorporation and UV light exposure and then digested by exonucleases. In CO-FISH, a telomeric probe produces two signals only, one at each end of the chromosome; in the presence of telomeric recombination, the telomeric signal is split, generating more than two signals per chromosome. Peripheral blood lymphocytes from three healthy volunteers, normal human fibroblasts, K562 cells, telomerase-positive HeLa cells (known to be negative for ALT),and telomerase-negative VA13 cells (known to be positive for ALT) were investigated for telomeric sister chromatid exchange (t-SCE); at least 20 metaphases per cell type were examined. Cultured peripheral blood lymphocytes and VA13 cells both showed increased levels of telomeric sister chromatid exchange in comparison to the other cells (P=0.0001): telomeric probe generated 2.62±0.11 telomeric signals/chromosome in lymphocytes; 2.23±0.04 in VA13 cells; 2.09±0.01 in HeLa cells; 2.02±0.01 in K562 cells; and 2.02±0.01 in human skin fibroblasts. Staining incorporated-BrdU over 24 hours and evaluation of “harlequin” chromosomes point to a similar rate of genomic sister chromatid exchange in lymphocytes, VA13 cells, and HeLa cells, suggesting that high chromatid exchange is confined to the telomeric region. A physical association between promyelocytic leukemia protein (PML) and telomeres is characteristic of some ALT-positive cells, but confocal microscopy failed to co-localize the telomeric probe and anti-PML monoclonal antibody in peripheral blood lymphocytes, suggesting that t-SCE in lymphocytes is not mediated by PML. This is the first demonstration of ALT activation in normal mammalian cells. ALT may be activated in peripheral blood lymphocytes as a complementary mechanism to maintain telomere length, and may explain the differences in age-related telomere shortening observed between lymphocytes and granulocytes.


2010 ◽  
Vol 78 (4) ◽  
pp. 1542-1551 ◽  
Author(s):  
Eric Baranowski ◽  
Sébastien Guiral ◽  
Eveline Sagné ◽  
Agnès Skapski ◽  
Christine Citti

ABSTRACT Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens.


Sign in / Sign up

Export Citation Format

Share Document