scholarly journals Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5286
Author(s):  
Fernando Alvarado-Hidalgo ◽  
Karla Ramírez-Sánchez ◽  
Ricardo Starbird-Perez

Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.

2018 ◽  
Vol 65 (1) ◽  
pp. 37-44
Author(s):  
Dijana Trišić ◽  
Vukoman Jokanović ◽  
Đorđe Antonijević ◽  
Dejan Marković

Summary Stem cells have shown great potential for in vitro tissue engineering, regenerative medicine, cell therapy and pharmaceutical applications. All these applications, especially in clinical trials, will require guided production of high-quality cells. Traditional culture techniques and applications have been performed for the majority of primary and established cell lines and standardized for various analyses. Still, these culture conditions are unable to mimic dynamic and specialized three-dimensional microenvironment of the stem cells’ niche from in vivo conditions. In an attempt to provide biomimetic microenvironments for stem cells in vitro growth, three-dimensional culture techniques have been developed. In our study advantages of newly developed porous scaffolds as the most promising in vitro imitation of niche that provides physical support, enables cell growth, regeneration and neovascularization, while they are replaced in time with newly created tissue was explained. Furthermore, dynamic cultivation techniques have been described, as new way of cell culturing that will be the main subject of our future research. In that manner, by developing an optimal dynamic culturing method, high-quality new cells and tissues would be possible to obtain, for any future clinical application.


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2007 ◽  
Vol 342-343 ◽  
pp. 273-276 ◽  
Author(s):  
Yun Qing Kang ◽  
Guang Fu Yin ◽  
Lin Luo ◽  
Ke Feng Wang ◽  
Yu Zhang

In bone tissue engineering, porous scaffolds served as the temporary matrix are often subjected to mechanical stress when implanted in the body. Based on this fact, the goal of this study was to examine the effects of mechanical loading on the in vitro degradation characteristics and kinetics of porous scaffolds in a custom-designed loading system. Porous Poly(L-lactic acid)/β-Tricalcium Phosphate (PLLA/β-TCP) composite scaffolds fabricated by using solution casting/compression molding/particulate leaching technique (SCP) were subjected to degradation in simulated body fluid (SBF) at 37°C for up to 6 weeks under the conditions: with and without static compressive loading, respectively. The results indicated that the increase of the porosity and decrease of the compressive strength under static compressive loading were slower than that of non-loading case, and so did the mass loss rate. It might be due to that the loading retarded the penetration, absorption and transfer of simulated body fluid. These data provide an important step towards understanding mechanical loading factors contributing to degradation.


2020 ◽  
Author(s):  
weiling huo ◽  
Xiaodong Wu ◽  
Yancheng zheng ◽  
Jian Cheng ◽  
Qiang Xu ◽  
...  

Reconstruction of bone defect is one of the difficult problems in orthopedic treatment, and bone tissue scaffold implantation is the most promising direction of bone defect reconstruction. In this study, we used the combination of HA (Hydroxyapatite) and PLGA [Poly (lactic-co-glycolic acid)] in the construction of polymer scaffolds, and introduced bioactive MSM (Methyl sulfonyl methane) into polymer scaffolds to prepare porous scaffolds. The osteoblasts, isolated and cultured in vitro, were seeded in the porous scaffolds to construct tissue-engineered scaffolds. Meanwhile, the model of rabbit radius defect was constructed to evaluate the biological aspects of five tissue-engineered scaffolds, which provided experimental basis for the application of the porous scaffolds in bone tissue engineering. The SEM characterization showed the pore size of porous scaffolds was uniform and the porosity was about 90%. The results of contact Angle testing suggested that the hydrophobic porous scaffold surface could effectively promote cell adhesion and cell proliferation, while mechanical property test showed good machinability. The results of drug loading and release efficiency of MSM showed that porous scaffolds could load MSM efficiently and prolong the release time of MSM. In vitro incubation of porous scaffolds and osteoblasts showed that the addition of a small quantity of MSM could promote the infiltration and proliferation of osteoblasts on the porous scaffolds. Similar results were obtained by implanting the tissue-engineered scaffolds, fused with the osteoblasts and MSM/HA/PLGA porous scaffolds, into the rabbit radius defect, which provided experimental basis for the application of the MSM/HA/PLGA porous scaffolds in bone tissue engineering.


Author(s):  
Tran Thanh Hoai ◽  
Nguyen Kim Nga

In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords Scaffold, Chitosan, Apatite, SBF. In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords: Scaffold, Chitosan, Apatite, SBF.   In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords: Scaffold, Chitosan, Apatite, SBF. References [1] M.P. Bostrom, D.A. Seigerman, The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study, Hss. Journal 1 (2005) 9-18. https://doi.org/10. 1007/s11420-005-0111-5.[2] T.T. Hoai, N.K Nga, L.T. Giang, T.Q. Huy, P.N.M. Tuan, B.T.T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater. 46 (2017) 5064-5072. https:// doi.org/10.1007/s11664-017-5509-6.[3] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603-632. https://doi.org/10.1016/j.progpolymsci.2006. 06.001.[4] N.K. Nga, H.D. Chinh, P.T.T Hong, T.Q. Huy, Facile chitosan films for high performance removal of reactive blue 19 dye from aqueous solution, J. Polym. Environ. 25 (2007) 146-155. https://doi.org/10.1007/s10924-016-0792-5.[5] M.N.V Ravi Kumar, R.A.A Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev. 104 (2004) 6017-6084. https://doi.org/10.1021/cr03 0441b.[6] J.M. Karp, M.S. Shoichet, J.E. Davies, Bone formation on two‐dimensional poly (DL‐lactide‐co‐glycolide)(PLGA) films and three‐dimensional PLGA tissue engineering scaffolds in vitro, J. Biomed. Mater. Res. A 64 (2003) 388-396. https://doi.org/10.1002/jbm.a.10420.[7] J.F. Mano, R.L. Reis, Osteochondral defects: present situation and tissue engineering approaches, J. Tissue. Eng. Regen. Med. 1 (2007) 261-273. https://doi.org/10.1002/term.37. [8] A.G. Mikos, J.S. Temenoff, Formation of highly porous biodegradable scaffolds for tissue engineering, Electron. J. Biotechn. 3 (2000) 23-24. http://dx.doi.org/10.4067/S0717-3458200000 0200003.[9] W.W. Thein-Han, R.D.K Misra, Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering, Acta Biomater. 5 (2009) 1182–1197. https://doi.org/ 10.1016/j.actbio.2008.11.025.[10] Y. Zhang, J.R. Venugopal, A.E. Turki, S. Ramakrishna, B. Su, C.T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering, Biomaterials 29 (2008) 4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038.[11] B.X. Vương, Tổng hợp và đặc trưng vật liệu composite hydroxyapatite/chitosan ứng dụng trong kỹ thuật y sinh.,Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ Tập 34 (2018) 9-15. https://doi.org/10.25073/ 2588-1140/vnunst.4689.[12] N.K. Nga, T.T. Hoai, P.H. Viet, Biomimetic scaffolds based on hydroxyapatite nanorod/poly (D, L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering, Colloids Surf. B Biointerf. 128 (2015) 506-514. https://doi.org/10. 1016/j.colsurfb.2015.03.001.[13] N.K. Nga, L.T. Giang, T.Q. Huy, C. Migliaresi, Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering, Colloids Surf. B: Biointerf. 116 (2014) 666-673. https://doi.org/10.1016/j.colsurfb.2013.11.001.[14] C.R. Kothapalli, M.T. Shaw, M. Wei, Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties, Acta Biomater. 1 (2005) 653-662. https://doi.org/10.1016/j.actbio.2005.06.005.[15] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915. https://doi.org/10.1016/j. biomaterials.2006.01.017[16] T.T. Hoai, N.K. Nga, Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly (D, L) lactic acid-based bone scaffolds, J. Iran. Chem. Soc. 15 (2018) 1663-1671. https://doi.org/10.1007/s13738-018-1365-4.        


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. I. Rizzo ◽  
L. Tomao ◽  
S. Tedesco ◽  
M. Cajozzo ◽  
M. Esposito ◽  
...  

AbstractCleft lip and palate (CL/P) is the most prevalent craniofacial birth defect in humans. None of the surgical procedures currently used for CL/P repair lead to definitive correction of hard palate bone interruption. Advances in tissue engineering and regenerative medicine aim to develop new strategies to restore palatal bone interruption by using tissue or organ-decellularized bioscaffolds seeded with host cells. Aim of this study was to set up a new natural scaffold deriving from a decellularized porcine mucoperiosteum, engineered by an innovative micro-perforation procedure based on Quantum Molecular Resonance (QMR) and then subjected to in vitro recellularization with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Our results demonstrated the efficiency of decellularization treatment gaining a natural, non-immunogenic scaffold with preserved collagen microenvironment that displays a favorable support to hMSC engraftment, spreading and differentiation. Ultrastructural analysis showed that the micro-perforation procedure preserved the collagen mesh, increasing the osteoinductive potential for mesenchymal precursor cells. In conclusion, we developed a novel tissue engineering protocol to obtain a non-immunogenic mucoperiosteal scaffold suitable for allogenic transplantation and CL/P repair. The innovative micro-perforation procedure improving hMSC osteogenic differentiation potentially impacts for enhanced palatal bone regeneration leading to future clinical applications in humans.


Author(s):  
Jin-Hyung Shim ◽  
Jong Young Kim ◽  
Kyung Shin Kang ◽  
Jung Kyu Park ◽  
Sei Kwang Hahn ◽  
...  

Tissue engineering is an interdisciplinary field that focuses on restoring and repairing tissues or organs. Cells, scaffolds, and biomolecules are recognized as three main components of tissue engineering. Solid freeform fabrication (SFF) technology is required to fabricate three-dimensional (3D) porous scaffolds to provide a 3D environment for cellular activity. SFF technology is especially advantageous for achieving a fully interconnected, porous scaffold. Bone morphogenic protein-2 (BMP-2), an important biomolecule, is widely used in bone tissue engineering to enhance bone regeneration activity. However, methods for the direct incorporation of intact BMP-2 within 3D scaffolds are rare. In this work, 3D porous scaffolds with poly(lactic-co-glycolic acid) chemically grafted hyaluronic acid (HA-PLGA), in which intact BMP-2 was directly encapsulated, were successfully fabricated using SFF technology. BMP-2 was previously protected by poly(ethylene glycol) (PEG), and the BMP-2/PEG complex was incorporated in HA-PLGA using an organic solvent. The HAPLGA/PEG/BMP-2 mixture was dissolved in chloroform and deposited via a multi-head deposition system (MHDS), one type of SFF technology, to fabricate a scaffold for tissue engineering. An additional air blower system and suction were installed in the MHDS for the solvent-based fabrication method. An in vitro evaluation of BMP-2 release was conducted, and prolonged release of intact BMP-2, for up to 28 days, was confirmed. After confirmation of advanced proliferation of pre osteoblasts, a superior differentiation effect of the HA-PLGA/PEG/BMP-2 scaffold was validated by measuring high expression levels of bone-specific markers, such as alkaline phosphatase (ALP) and osteocalcin (OC). We show that our solvent-based fabrication is a non-toxic method for restoring cellular activity. Moreover, the HAPLGA/PEG/BMP-2 scaffold was effective for bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document